Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(26): eabl9207, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35776795

RESUMO

Nutrient inputs from the atmosphere and rivers to the ocean are increased substantially by human activities. However, the effects of increased nutrient inputs are not included in the widely used CMIP5 Earth system models, which introduce bias into model simulations of ocean biogeochemistry. Here, using historical simulations by an Earth system model with perturbed atmospheric and riverine nutrient inputs, we show that the contribution of anthropogenic nutrient inputs to past global changes in ocean biogeochemistry is of similar magnitude to the effect of climate change. Anthropogenic nutrient inputs increase oceanic productivity and carbon uptake, offsetting climate-induced decrease and accelerating climate-driven deoxygenation in the upper ocean. Moreover, accounting for anthropogenic nutrient inputs improves the known carbon budget imbalance and model underestimation of the observed decrease in the global oxygen inventory. Considering the effects of both nutrient inputs and climate change is crucial in assessing anthropogenic impacts on ocean biogeochemistry.

2.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433564

RESUMO

Recent paleo reconstructions suggest that increased carbon storage in the Southern Ocean during glacial periods contributed to low glacial atmospheric carbon dioxide concentration (pCO2). However, quantifying its contribution in three-dimensional ocean general circulation models (OGCMs) has proven challenging. Here, we show that OGCM simulation with sedimentary process considering enhanced Southern Ocean salinity stratification and iron fertilization from glaciogenic dust during glacial periods improves model-data agreement of glacial deep water with isotopically light carbon, low oxygen, and old radiocarbon ages. The glacial simulation shows a 77-ppm reduction of atmospheric pCO2, which closely matches the paleo record. The Southern Ocean salinity stratification and the iron fertilization from glaciogenic dust amplified the carbonate sedimentary feedback, which caused most of the increased carbon storage in the deep ocean and played an important role in pCO2 reduction. The model-data agreement of Southern Ocean properties is crucial for simulating glacial changes in the ocean carbon cycle.

3.
Curr Clim Change Rep ; 6(3): 95-119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32837849

RESUMO

Purpose of Review: The changes or updates in ocean biogeochemistry component have been mapped between CMIP5 and CMIP6 model versions, and an assessment made of how far these have led to improvements in the simulated mean state of marine biogeochemical models within the current generation of Earth system models (ESMs). Recent Findings: The representation of marine biogeochemistry has progressed within the current generation of Earth system models. However, it remains difficult to identify which model updates are responsible for a given improvement. In addition, the full potential of marine biogeochemistry in terms of Earth system interactions and climate feedback remains poorly examined in the current generation of Earth system models. Summary: Increasing availability of ocean biogeochemical data, as well as an improved understanding of the underlying processes, allows advances in the marine biogeochemical components of the current generation of ESMs. The present study scrutinizes the extent to which marine biogeochemistry components of ESMs have progressed between the 5th and the 6th phases of the Coupled Model Intercomparison Project (CMIP).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA