Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 8(4)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35728581

RESUMO

This study investigates the equivalence or compatibility between U-Net and visual segmentations of fibroglandular tissue regions by mammography experts for calculating the breast density and mean glandular dose (MGD). A total of 703 mediolateral oblique-view mammograms were used for segmentation. Two region types were set as the ground truth (determined visually): (1) one type included only the region where fibroglandular tissue was identifiable (called the 'dense region'); (2) the other type included the region where the fibroglandular tissue may have existed in the past, provided that apparent adipose-only parts, such as the retromammary space, are excluded (the 'diffuse region'). U-Net was trained to segment the fibroglandular tissue region with an adaptive moment estimation optimiser, five-fold cross-validated with 400 training and 100 validation mammograms, and tested with 203 mammograms. The breast density and MGD were calculated using the van Engeland and Dance formulas, respectively, and compared between U-Net and the ground truth with the Dice similarity coefficient and Bland-Altman analysis. Dice similarity coefficients between U-Net and the ground truth were 0.895 and 0.939 for the dense and diffuse regions, respectively. In the Bland-Altman analysis, no proportional or fixed errors were discovered in either the dense or diffuse region for breast density, whereas a slight proportional error was discovered in both regions for the MGD (the slopes of the regression lines were -0.0299 and -0.0443 for the dense and diffuse regions, respectively). Consequently, the U-Net and ground truth were deemed equivalent (interchangeable) for breast density and compatible (interchangeable following four simple arithmetic operations) for MGD. U-Net-based segmentation of the fibroglandular tissue region was satisfactory for both regions, providing reliable segmentation for breast density and MGD calculations. U-Net will be useful in developing a reliable individualised screening-mammography programme, instead of relying on the visual judgement of mammography experts.


Assuntos
Processamento de Imagem Assistida por Computador , Mamografia , Tecido Adiposo , Mama/diagnóstico por imagem , Densidade da Mama
2.
PLoS One ; 16(1): e0245060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411847

RESUMO

OBJECTIVE: Despite the high risk of missing lesions in mammography, the missed lesion rate is yet to be clinically established. Further, no breast phantoms with adjustable breast density currently exist. We developed a novel, adjustable-density breast phantom with a composition identical to that of actual breasts, and determined the quantitative relationship between breast density and the missed lesion rate in mammography. METHODS: An original breast phantom consisting of adipose- and fibroglandular-equivalent materials was developed, and a receiver operating characteristic (ROC) study was performed. Breast density, which is the fraction by weight of fibroglandular to total tissue, was adjusted to 25%, 50%, and 75% by arbitrarily mixing the two materials. Microcalcification, mass lesions, and spiculated lesions, each with unique characteristics, were inserted into the phantom. For the above-mentioned fibroglandular densities, 50 positive and 50 negative images for each lesion type were used as case samples for the ROC study. Five certified radiological technologists participated in lesion detection. RESULTS: The mass-lesion detection rate, according to the area under the curve, decreased by 18.0% (p = 0.0001, 95% Confidence intervals [CI] = 0.1258 to 0.1822) and 37.8% (p = 0.0003, 95% CI = 0.2453 to 0.4031) for breast densities of 50% and 75%, respectively, compared to that for a 25% breast density. A similar tendency was observed with microcalcification; however, spiculated lesions did not follow this tendency. CONCLUSIONS: We quantified the missed lesion rate in different densities of breast tissue using a novel breast phantom, which is imperative for advancing individualized screening mammography.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Mamografia/métodos , Detecção Precoce de Câncer , Feminino , Humanos , Japão , Imagens de Fantasmas
3.
Med Biol Eng Comput ; 57(1): 289-298, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30099671

RESUMO

Glandularity has a marked impact on the incidence of breast cancer and the missed lesion rate of mammography. The aim of this study was to develop a novel model for predicting glandularity and patient radiation dose using physical factors that are easily determined prior to mammography. Data regarding glandularity and mean glandular dose were obtained from 331 mammograms. A stepwise multiple regression analysis model was developed to predict glandularity using age, compressed breast thickness and body mass index (BMI), while a model to predict mean glandular dose was created using quantified glandularity, age, compressed breast thickness, height and body weight. The most significant factor for predicting glandularity was age, the influence of which was 1.8 times that of BMI. The most significant factor for predicting mean glandular dose was compressed breast thickness, the influence of which was 1.4 times that of glandularity, 3.5 times that of age and 6.1 times that of height. Both models were statistically significant (both p < 0.0001). Easily determined physical factors were able to explain 42.8% of the total variance in glandularity and 62.4% of the variance in mean glandular dose. Graphical abstract Validation results of the above prediction model made using physical factors in Japanese women. The plotted points of actual vs. prediction glandularity shown in a are distributed in the vicinity of the diagonal line, and the residual plot for predicted glandularity shows an almost random distribution as shown in b. These distributions indicate the appropriateness of the prediction model.


Assuntos
Mama/anatomia & histologia , Mama/efeitos da radiação , Mamografia/métodos , Doses de Radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Japão , Análise de Regressão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA