Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Clin Biochem Nutr ; 75(1): 24-32, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39070537

RESUMO

The endosomal-lysosomal system represents a crucial degradation pathway for various extracellular substances, and its dysfunction is linked to cardiovascular and neurodegenerative diseases. This degradation process involves multiple steps: (1) the uptake of extracellular molecules, (2) transport of cargos to lysosomes, and (3) digestion by lysosomal enzymes. While cellular uptake and lysosomal function are reportedly regulated by the mTORC1-TFEB axis, the key regulatory signal for cargo transport remains unclear. Notably, our previous study discovered that isorhamnetin, a dietary flavonoid, enhances endosomal-lysosomal proteolysis in the J774.1 cell line independently of the mTORC1-TFEB axis. This finding suggests the involvement of another signal in the mechanism of isorhamnetin. This study analyzes the molecular mechanism of isorhamnetin using transcriptome analysis and reveals that the transcription factor GATA3 plays a critical role in enhanced endosomal-lysosomal degradation. Our data also demonstrate that mTORC2 regulates GATA3 nuclear translocation, and the mTORC2-GATA3 axis alters endosomal formation and maturation, facilitating the efficient transport of cargos to lysosomes. This study suggests that the mTORC2-GATA3 axis might be a novel target for the degradation of abnormal substances.

2.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 25-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417849

RESUMO

Dietary Reference Intakes for Japanese provide target values for proteins, fats, and carbohydrates. However, they do not provide information on reference values for amino acids (AAs) and fatty acids (FAs), which determine the quality of foods in detail. Therefore, we evaluated AAs and FAs using the Food Exchange Lists-Dietary Guidance for Persons with Diabetes (in Japanese) Utilization, Second Edition Sample Menus and Practice (FELD) as an ideal Japanese diet. Based on FELD, 15 different daily meal patterns were employed with combinations of three levels of carbohydrates %energy (high carbohydrate [HC], 60%; middle carbohydrate [MC], 55%; and low carbohydrate [LC], 50%) and five levels of energy (1,200-2,000 kcal). Using the Japanese Food Composition Table 2020 adjusted for 1,000 kcal, 18 AAs, 49 FAs, and calorie densities (CDs, kcal/g) were calculated and compared among the three groups. Dietary AA was rich in glutamic acid, aspartic acid, and leucine; in order, no significant differences were observed among HC, MC, and LC for 18 AAs. Dietary FA was higher for 18:1 total, 16:0, and 18:2 n-6. Moreover, 16:0, 20:0, and 18:1 total in LC and 22:0 and 18:3 n-3 in MC were significantly higher than those in HC. The HC, MC, and LC CD was low at 0.82, 0.84, and 0.93 kcal/g, respectively. No significant differences in 18 AAs and CD were noted among HC, MC, and LC in FELD; however, significant differences were observed in the FA profiles. This study suggests the importance of evaluating diet using AA and FA units.


Assuntos
Diabetes Mellitus , Ácidos Graxos , Aminoácidos , Japão , Carboidratos da Dieta , Dieta , Gorduras na Dieta
3.
J Clin Biochem Nutr ; 73(3): 198-204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970550

RESUMO

Hyperphosphatemia is an independent and non-classical risk factor of cardiovascular disease and mortality in patients with chronic kidney disease (CKD). Increased levels of extracellular inorganic phosphate (Pi) are known to directly induce vascular calcification, but the detailed underlying mechanism has not been clarified. Although serum Pi levels during the growth period are as high as those observed in hyperphosphatemia in adult CKD, vascular calcification does not usually occur during growth. Here, we have examined whether the defence system against Pi-induced vascular calcification can exist during the growth period using mice model. We found that calcification propensity of young serum (aged 3 weeks) was significantly lower than that of adult serum (10 months), possibly due to high fetuin-A levels. In addition, when the aorta was cultured in high Pi medium in vitro, obvious calcification was observed in the adult aorta but not in the young aorta. Furthermore, culture in high Pi medium increased the mRNA level of tissue-nonspecific alkaline phosphatase (TNAP), which degrades pyrophosphate, only in the adult aorta. Collectively, our findings indicate that the aorta in growing mouse may be resistant to Pi-induced vascular calcification via a mechanism in which high serum fetuin-A levels and suppressed TNAP expression.

4.
J Clin Biochem Nutr ; 73(3): 221-227, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970557

RESUMO

Disorder of phosphate metabolism is a common pathological condition in chronic kidney disease patients. Excessive intake of dietary phosphate deteriorates chronic kidney disease and various complications including cardiovascular and infectious diseases. Recent reports have demonstrated that gut microbiome disturbance is associated with both the etiology and progression of chronic kidney disease. However, the relationship between dietary phosphate and gut microbiome remains unknown. Here, we examined the effects of excessive intake of phosphate on gut microbiome. Five-week-old male C57BL/6J mice were fed either control diet or high phosphate diet for eight weeks. Analysis of the gut microbiota was carried out using MiSeq next generation sequencer, and short-chain fatty acids were determined with GC-MS. In analysis of gut microbiota, significantly increased in Erysipelotrichaceae and decreased in Ruminococcaceae were observed in high phosphate diet group. Furthermore, high phosphate diet induced reduction of microbial diversity and decreased mRNA levels of colonic tight junction markers. These results suggest that the excessive intake of dietary phosphate disturbs gut microbiota and affects intestinal barrier function.

5.
Oncotarget ; 13: 1286-1298, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36441784

RESUMO

Metabolomics, defined as the comprehensive identification of all small metabolites in a biological sample, has the power to shed light on phenotypic changes associated with various diseases, including cancer. To discover potential metabolomic biomarkers of hepatocellular carcinoma (HCC), we investigated the metabolomes of tumor and non-tumor tissue in 20 patients with primary HCC using capillary electrophoresis-time-of-flight mass spectrometry. We also analyzed blood samples taken immediately before and 14 days after hepatectomy to identify associated changes in the serum metabolome. Marked changes were detected in the different quantity of 61 metabolites that could discriminate between HCC tumor and paired non-tumor tissue and additionally between HCC primary tumors and colorectal liver metastases. Among the 30 metabolites significantly upregulated in HCC tumors compared with non-tumor tissues, 10 were amino acids, and 7 were essential amino acids (leucine, valine, tryptophan, isoleucine, methionine, lysine, and phenylalanine). Similarly, the serum metabolomes of HCC patients before hepatectomy revealed a significant increase in 16 metabolites, including leucine, valine, and tryptophan. Our results reveal striking differences in the metabolomes of HCC tumor tissue compared with non-tumor tissue, and identify the essential amino acids leucine, valine, and tryptophan as potential metabolic biomarkers for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Aminoácidos Essenciais , Carcinoma Hepatocelular/diagnóstico , Triptofano , Leucina , Neoplasias Hepáticas/diagnóstico , Valina
6.
J Clin Biochem Nutr ; 71(2): 103-111, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36213783

RESUMO

Vascular calcification is an important pathogenesis related to cardiovascular disease and high mortality rate in chronic kidney disease (CKD) patients. It has been well-known that hyper-phosphatemia induces osteochondrogenic transition of vascular smooth muscle cells (VSMCs) resulting ectopic calcification in aortic media, cardiac valve, and kidney. However, the detailed mechanism of the ectopic calcification has been not clarified yet. Here, we found that the co-localization of CYP27B1 with the calcified lesions of aorta and arteries in kidney of klotho mutant (kl/kl) mice, and then investigated the role of CYP27B1 in the mineralization of the VSMCs. Under high phosphate condition, overexpression of CYP27B1 induced calcification and osteocalcin mRNA expression in the VSMCs. Inversely, siRNA-CYP27B1 inhibited high phosphate-induced calcification of the VSMCs. We also found that the accumulated CYP27B1 protein was glycosylated in the kidney of kl/kl mice. Therefore, overexpression of CYP27B1-N310A and CYP27B1-T439A, which are a mutation for N-linked glycosylation site (N310A) and a mutation for O-linked glycosylation site (T439A) in CYP27B1, decreased calcium deposition and expression of RUNX2 induced by high phosphate medium in VSMCs compared with wild-type CYP27B1. These results suggest that extra-renal expression of glycosylated CYP27B1 would be required for ectopic calcification of VSMCs under hyperphosphatemia.

7.
J Nutr Biochem ; 106: 109017, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35461903

RESUMO

Lipophagy, a form of selective autophagy, degrades lipid droplet (LD) in adipose tissue and the liver. The chemotherapeutic isothiocyanate sulforaphane (SFN) contributes to lipolysis through the activation of hormone-sensitive lipase and the browning of white adipocytes. However, the details concerning the regulation of lipolysis in adipocytes by SFN-mediated autophagy remain unclear. In this study, we investigated the effects of SFN on autophagy in the epididymal fat of mice fed a high-fat diet (HFD) or control-fat diet and on the molecular mechanisms of autophagy in differentiated 3T3-L1 cells. Western blotting revealed that the protein expression of lipidated LC3 (LC3-II), an autophagic substrate, was induced after 3T3-L1 adipocytes treatment with SFN. In addition, SFN increased the LC3-II protein expression in the epididymal fat of mice fed an HFD. Immunofluorescence showed that the SFN-induced LC3 expression was co-localized with LDs in 3T3-L1 adipocytes and with perilipin, the most abundant adipocyte-specific protein, in adipocytes of mice fed an HFD. Next, we confirmed that SFN activates autophagy flux in differentiated 3T3-L1 cells using the mCherry-EGFP-LC3 and GFP-LC3-RFP-LC3ΔG probe. Furthermore, we examined the induction mechanisms of autophagy by SFN in 3T3-L1 adipocytes using western blotting. ATG5 knockdown partially blocked the SFN-induced release of fatty acids from LDs in mature 3T3-L1 adipocytes. SFN time-dependently elicited the phosphorylation of AMPK, the dephosphorylation of mTOR, and the phosphorylation of ULK1 in differentiated 3T3-L1 cells. Taken together, these results suggest that SFN may provoke lipophagy through AMPK-mTOR-ULK1 pathway signaling, resulting in partial lipolysis of adipocytes.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Isotiocianatos , Serina-Treonina Quinases TOR , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Isotiocianatos/farmacologia , Lipólise/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos/farmacologia , Serina-Treonina Quinases TOR/metabolismo
8.
Life Sci Alliance ; 5(7)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35318262

RESUMO

All-trans retinoic acid (ATRA) increases the sensitivity to unfolded protein response in differentiating leukemic blasts. The downstream transcriptional factor of PERK, a major arm of unfolded protein response, regulates muscle differentiation. However, the role of growth arrest and DNA damage-inducible protein 34 (GADD34), one of the downstream factors of PERK, and the effects of ATRA on GADD34 expression in muscle remain unclear. In this study, we identified ATRA increased the GADD34 expression independent of the PERK signal in the gastrocnemius muscle of mice. ATRA up-regulated GADD34 expression through the transcriptional activation of GADD34 gene via inhibiting the interaction of homeobox Six1 and transcription co-repressor TLE3 with the MEF3-binding site on the GADD34 gene promoter in skeletal muscle. ATRA also inhibited the interaction of TTP, which induces mRNA degradation, with AU-rich element on GADD34 mRNA via p-38 MAPK, resulting in the instability of GADD34 mRNA. Overexpressed GADD34 in C2C12 cells changes the type of myosin heavy chain in myotubes. These results suggest ATRA increases GADD34 expression via transcriptional and post-transcriptional regulation, which changes muscle fiber type.


Assuntos
Fibras Musculares Esqueléticas , Proteína Fosfatase 1 , Tretinoína , Animais , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Proteína Fosfatase 1/metabolismo , RNA Mensageiro , Fatores de Transcrição/genética , Tretinoína/metabolismo , Tretinoína/farmacologia
9.
J Hepatol ; 77(1): 98-107, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35090958

RESUMO

BACKGROUND & AIMS: Malnutrition is associated with adverse clinical outcomes in patients with cirrhosis. Accurate assessment of energy requirements is needed to optimize dietary intake. Resting energy expenditure (REE), the major component of total energy expenditure, can be measured using indirect calorimetry (mREE) or estimated using prediction equations (pREE). This study assessed the usefulness of predicted estimates of REE in this patient population. METHODS: Individual mREE data were available for 900 patients with cirrhosis (mean [±1 SD] age 55.7±11.6 years-old; 70% men; 52% south-east Asian) and 282 healthy controls (mean age 36.0±12.8 years-old; 52% men; 18% south-east Asian). Metabolic status was classified using thresholds based on the mean ± 1 SD of the mREE in the healthy controls. Comparisons were made between mREE and pREE estimates obtained using the Harris-Benedict, Mifflin, Schofield and Henry equations. Stepwise regression was used to build 3 new prediction models which included sex, ethnicity, body composition measures, and model for end-stage liver disease scores. RESULTS: The mean mREE was significantly higher in patients than controls when referenced to dry body weight (22.4±3.8 cf. 20.8±2.6 kcal/kg/24 hr; p <0.001); there were no significant sex differences. The mean mREE was significantly higher in Caucasian than Asian patients (23.1±4.4 cf. 21.7±2.9 kcal/kg/24 hr; p <0.001). Overall, 37.1% of Caucasian and 25.3% of Asian patients were classified as hypermetabolic. The differences between mREE and pREE were both statistically and clinically relevant; in the total patient population, pREE estimates ranged from 501 kcal/24 hr less to 548 kcal/24 hr more than the mREE. Newly derived prediction equations provided better estimates of mREE but still had limited clinical utility. CONCLUSIONS: Prediction equations do not provide useful estimates of REE in patients with cirrhosis. REE should be directly measured. LAY SUMMARY: People with cirrhosis are often malnourished and this has a detrimental effect on outcome. Provision of an adequate diet is very important and is best achieved by measuring daily energy requirements and adjusting dietary intake accordingly. Prediction equations, which use information on age, sex, weight, and height can be used to estimate energy requirements; however, the results they provide are not accurate enough for clinical use, particularly as they vary according to sex and ethnicity.


Assuntos
Doença Hepática Terminal , Desnutrição , Adulto , Idoso , Metabolismo Basal , Metabolismo Energético , Feminino , Humanos , Cirrose Hepática/complicações , Masculino , Desnutrição/etiologia , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
10.
Antioxidants (Basel) ; 9(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261065

RESUMO

Autophagy is a major degradation system for intracellular macromolecules. Its decline with age or obesity is related to the onset and development of various intractable diseases. Although dietary phytochemicals are expected to enhance autophagy for preventive medicine, few studies have addressed their effects on the autophagy flux, which is the focus of the current study. Herein, 67 dietary phytochemicals were screened using a green fluorescent protein (GFP)-microtubule-associated protein light chain 3 (LC3)-red fluorescent protein (RFP)-LC3ΔG probe for the quantitative assessment of autophagic degradation. Among them, isorhamnetin, chrysoeriol, 2,2',4'-trihydroxychalcone, and zerumbone enhanced the autophagy flux in HeLa cells. Meanwhile, analysis of the structure-activity relationships indicated that the 3'-methoxy-4'-hydroxy group on the B-ring in the flavone skeleton and an ortho-phenolic group on the chalcone B-ring were crucial for phytochemicals activities. These active compounds were also effective in colon carcinoma Caco-2 cells, and some of them increased the expression of p62 protein, a typical substrate of autophagic proteolysis, indicating that phytochemicals impact p62 levels in autophagy-dependent and/or -independent manners. In addition, these compounds were characterized by distinct modes of action. While isorhamnetin and chrysoeriol enhanced autophagy in an mTOR signaling-dependent manner, the actions of 2,2',4'-trihydroxychalcone and zerumbone were independent of mTOR signaling. Hence, these dietary phytochemicals may prove effective as potential preventive or therapeutic strategies for lifestyle-related diseases.

11.
Metabolites ; 10(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139606

RESUMO

As the physical properties and functionality of dipeptides differ from those of amino acids, they have attracted attention in metabolomics; however, their functions in vivo have not been clarified in detail. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and its major cause is chronic hepatitis. This study was conducted to explore tumor-specific dipeptide characteristics by performing comprehensive dipeptide analysis in the tumor and surrounding nontumor tissue of patients with HCC. Dipeptides were analyzed by liquid chromatography tandem mass spectrometry and capillary electrophoresis tandem mass spectrometry. Principal component analysis using 236 detected dipeptides showed differences in the dipeptide profiles between nontumor and tumor tissues; however, no clear difference was observed in etiological comparison. In addition, the N- and C-terminal amino acid compositions of the detected dipeptides significantly differed, suggesting the substrate specificity of enzyme proteins, such as peptidase. Furthermore, hepatitis-derived HCC may show a characteristic dipeptide profile even before tumor formation. These results provide insight into HCC pathogenesis and may help identify novel biomarkers for diagnosis.

12.
J Clin Biochem Nutr ; 67(2): 179-187, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33041516

RESUMO

Skeletal muscle atrophy is associated with mortality and poor prognosis in patients with chronic kidney disease (CKD). However, underlying mechanism by which CKD causes muscle atrophy has not been completely understood. The quality of lipids (lipoquality), which is defined as the functional features of diverse lipid species, has recently been recognized as the pathology of various diseases. In this study, we investigated the roles of the stearoyl-CoA desaturase (SCD), which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, in skeletal muscle on muscle atrophy in CKD model animals. In comparison to control rats, CKD rats decreased the SCD activity and its gene expression in atrophic gastrocnemius muscle. Next, oleic acid blocked the reduction of the thickness of C2C12 myotubes and the increase of the endoplasmic reticulum stress induced by SCD inhibitor. Furthermore, endoplasmic reticulum stress inhibitor ameliorated CKD-induced muscle atrophy (the weakness of grip strength and the decrease of muscle fiber size of gastrocnemius muscle) in mice and the reduction of the thickness of C2C12 myotubes by SCD inhibitor. These results suggest that the repression of SCD activity causes muscle atrophy through excessive endoplasmic reticulum stress in CKD.

13.
J Ren Nutr ; 30(6): 493-502, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778471

RESUMO

OBJECTIVE: Dietary phosphorus (P) restriction is crucial to treat hyperphosphatemia and reduce cardiovascular disease risk and mortality in patients with chronic kidney disease (CKD) and the wider population. Various methods for dietary P restriction exist, but the bioavailability of P in food should also be considered when making appropriate food choices to maintain patients' quality of life. Here, we propose the "Phosphatemic Index" (PI) as a novel tool for evaluating dietary P load based on P bioavailability; we also evaluated the effect of continuous intake of different PI foods in mixed meals on serum intact fibroblast growth factor 23 concentration. DESIGN AND METHODS: A 2-stage crossover study was conducted: Study 1: 20 healthy participants consumed 10 different foods containing 200 mg of P, and the PI was calculated from the area under the curve of a time versus serum P concentration curve; Study 2: 10 healthy participants consumed 4 different test meals (low, medium, or high PI meals or a control) over a 5-day period. RESULTS: Study 1 showed milk and dairy products had high PI values, pork and ham had medium PI values, and soy and tofu had low PI values. In Study 2, ingestion of high PI test meals showed higher fasting serum intact fibroblast growth factor 23 levels and lower serum 1,25-dihydroxyvitamin D levels compared with ingestion of low PI test meals. CONCLUSION: These findings suggest that the PI can usefully evaluate the dietary P load of various foods and may help to make appropriate food choices for dietary P restriction in CKD patients.


Assuntos
Dieta/métodos , Fatores de Crescimento de Fibroblastos/sangue , Fósforo na Dieta/sangue , Adulto , Disponibilidade Biológica , Estudos Cross-Over , Feminino , Humanos , Masculino , Valores de Referência , Adulto Jovem
14.
Biochem J ; 477(4): 817-831, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32016357

RESUMO

Inorganic phosphate (Pi) homeostasis is regulated by intestinal absorption via type II sodium-dependent co-transporter (Npt2b) and by renal reabsorption via Npt2a and Npt2c. Although we previously reported that vitamin A-deficient (VAD) rats had increased urine Pi excretion through the decreased renal expression of Npt2a and Npt2c, the effect of vitamin A on the intestinal Npt2b expression remains unclear. In this study, we investigated the effects of treatment with all-trans retinoic acid (ATRA), a metabolite of vitamin A, on the Pi absorption and the Npt2b expression in the intestine of VAD rats, as well as and the underlying molecular mechanisms. In VAD rats, the intestinal Pi uptake activity and the expression of Npt2b were increased, but were reduced by the administration of ATRA. The transcriptional activity of reporter plasmid containing the promoter region of the rat Npt2b gene was reduced by ATRA in NIH3T3 cells overexpressing retinoic acid receptor (RAR) and retinoid X receptor (RXR). On the other hand, CCAAT/enhancer-binding proteins (C/EBP) induced transcriptional activity of the Npt2b gene. Knockdown of the C/EBP gene and a mutation analysis of the C/EBP responsible element in the Npt2b gene promoter indicated that C/EBP plays a pivotal role in the regulation of Npt2b gene transcriptional activity by ATRA. EMSA revealed that the RAR/RXR complex inhibits binding of C/EBP to Npt2b gene promoter. Together, these results suggest that ATRA may reduce the intestinal Pi uptake by preventing C/EBP activation of the intestinal Npt2b gene.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Intestino Delgado/metabolismo , Rim/metabolismo , Regiões Promotoras Genéticas , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Hipofosfatemia Familiar/metabolismo , Hipofosfatemia Familiar/patologia , Hipofosfatemia Familiar/prevenção & controle , Intestino Delgado/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Camundongos , Células NIH 3T3 , Ratos , Ratos Wistar , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
15.
Biosci Biotechnol Biochem ; 84(6): 1221-1231, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32046625

RESUMO

Lysosome is the principal organelle for the ultimate degradation of cellular macromolecules, which are delivered through endocytosis, phagocytosis, and autophagy. The lysosomal functions have been found to be impaired by fatty foods and aging, and more importantly, the lysosomal dysfunction in macrophages has been reported as a risk of atherosclerosis development. In this study, we searched for dietary polyphenols which possess the activity for enhancing the lysosomal degradation in J774.1, a murine macrophage-like cell line. Screening test utilizing DQ-BSA digestion identified isorhamnetin (3'-O-methylquercetin) as an active compound. Interestingly, structural comparison to inactive flavonols revealed that the chemical structure of the B-ring moiety in isorhamnetin is the primary determinant of its lysosome-enhancing activity. Unexpectedly isorhamnetin failed to inhibit mTORC1-TFEB signaling, a master regulator of lysosomal biogenesis and function. Our data suggested that the other molecular mechanism might be critical for the regulation of lysosomes in macrophages.Abbreviations: ANOVA: analysis of variance; ApoE: apolipoprotein E; ATP6V0D2: ATPase H+ transporting V0 subunit d2; BAF: bafilomycin A1; BODIPY: boron dipyrromethene; BSA: bovine serum albumin; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified eagle medium; DMSO: dimethyl sulfoxide; EGCG: epigallocatechin-3-gallate; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HPLC: high-performance liquid chromatography; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LC-MS/MS: liquid chromatography tandem mass spectrometry; MITF: microphthalmia-associated transcription factor; MRM: multiple reaction monitoring; mTORC1: mechanistic target of rapamycin complex 1; PBS: phosphate-buffered saline; PPARγ: peroxisome proliferator-activated receptor γ; RT-qPCR: reverse transcription quantitative polymerase chain reaction; SDS: sodium dodecyl sulfate; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment protein receptor; TBS: Tris-buffered saline; TFA: trifluoroacetic acid; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcriptional factor EB; TFEC: transcription factor EC; V-ATPase: vacuolar-type proton ATPase.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Proteólise/efeitos dos fármacos , Quercetina/análogos & derivados , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cromatografia Líquida de Alta Pressão , Dissacarídeos/química , Dissacarídeos/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Plasmídeos/genética , Quercetina/química , Quercetina/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espectrometria de Massas em Tandem , Transfecção
16.
Clin Nutr ESPEN ; 30: 138-144, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30904214

RESUMO

BACKGROUND & AIMS: A late evening snack (LES) is recommended as a nutritional therapy for liver cirrhosis to minimize early starvation. In patients with liver cirrhosis, the maintenance of the branched-chain amino acid (BCAA) levels is important during muscle synthesis at night. Therefore, we investigated the effects of a LES with BCAAs on the Fischer ratio in patients with liver cirrhosis. METHODS: This study included 10 outpatients with liver cirrhosis who did not consume a LES. Regarding the patient characteristics, the mean age was 73.1 ± 8.9 years, the male:female ratio was 5:5, and the mean body mass index was 23.3 ± 2.4 kg/m2. The etiology was hepatitis C virus in eight patients and alcoholism in two patients. Amino acid levels were measured in all 10 patients at four time points: before LES (control) and 1 month after the administration of each BCAA. The administration levels included 1) LES: BCAA-enriched enteral nutrition (BCAA-EN) containing BCAAs 6.1 g as a LES; 2) GP-no LES: BCAA-enriched granule product (BCAA-GP) containing 4 g BCAAs per pack, two packs per day, and BCAA-EN until dinner containing BCAAs in total 14.1 g per day; and 3) GP-LES: BCAA-GP, two packs per day, and BCAA-EN as a LES containing BCAAs in total 14.1 g per day. The Friedman nonparametric test with a post-hoc Dunn's multiple comparison was used for statistical analyses. RESULTS: There were no significant changes in body weight and serum albumin levels between the three types of BCAA administration. Valine significantly increased following LES and GP-LES, isoleucine significantly increased following GP-LES, and tyrosine significantly decreased following LES and GP-LES compared with those in the control. There was no significant difference in the leucine and phenylalanine levels among the groups. The Fischer ratio in the LES (2.2 ± 0.8) and GP-LES (2.3 ± 0.8) groups were significantly higher than that in the control (1.8 ± 0.6), but there was no significant difference compared with the Fischer ratio in the GP-no LES (1.8 ± 0.7) group. Furthermore, the Fischer ratio was significantly higher in the GP-LES group than in the GP-no LES group. CONCLUSION: These results suggested that it is not only the amount of BCAAs, but also LES with BCAAs, which is needed to improve the Fischer ratio at fasting.


Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Proteínas Alimentares/administração & dosagem , Cirrose Hepática/dietoterapia , Pacientes Ambulatoriais , Lanches , Idoso , Ritmo Circadiano , Feminino , Humanos , Masculino , Resultado do Tratamento
17.
Calcif Tissue Int ; 104(6): 667-678, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30671592

RESUMO

Inorganic phosphate (Pi) is an essential nutrient for maintaining various biological functions, particularly during growth periods. Excess intake of dietary Pi increases the secretion of fibroblast growth factor 23 (FGF23) and parathyroid hormone to maintain plasma Pi levels. FGF23 is a potent phosphaturic factor that binds to the α-klotho/FGFR complex in the kidney to promote excretion of Pi into the urine. In addition, excess intake of dietary Pi decreases renal α-klotho expression. Down-regulation or lack of α-klotho induces a premature aging-like phenotype, resulting from hyperphosphatemia, and leading to conditions such as ectopic calcification and osteoporosis. However, it remains unclear what effects dietary Pi has on α-klotho expression at different life stages, especially during growth periods. To investigate this, we used C57BL/6J mice in two life stages during growing period. Weaned (3 weeks old) and periadolescent (7 weeks old) were randomly divided into seven experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. As a result, elevated plasma Pi and FGF23 levels and decreased renal α-klotho expression were observed in weaned mice fed with a high Pi diet. In addition, a high Pi diet clearly induced renal calcification in the weaned mice. However, in the periadolescent group, renal calcification was not observed, even in the 1.8% Pi diet group. The present study indicates that a high Pi diet in weaned mice has much greater adverse effects on renal α-klotho expression and pathogenesis of renal calcification compared with periadolescent mice.


Assuntos
Dieta , Glucuronidase/genética , Crescimento e Desenvolvimento/efeitos dos fármacos , Fosfatos/farmacologia , Animais , Análise Química do Sangue , Cálcio/sangue , Cálcio/urina , Fator de Crescimento de Fibroblastos 23 , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glucuronidase/metabolismo , Crescimento e Desenvolvimento/genética , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos/sangue , Fosfatos/urina , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Urinálise , Desmame
18.
Nutrition ; 58: 110-119, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391689

RESUMO

OBJECTIVES: Perioperative nutritional management is essential for early recovery after liver surgery. The aim of this study was to assess changes in amino acid levels in serum and urine after hepatectomy. METHODS: Serum samples were collected from 16 patients with hepatocellular carcinoma before and 1, 3, and 14 d after hepatectomy (S0, S1, S3, and S14, respectively). Spot urine samples were collected before and 3 d after the hepatectomy (U0 and U3). Metabolites in the serum and urine were analyzed. RESULTS: Compared with S0, insulin levels significantly increased in the S1 and S3 samples. Valine levels significantly decreased in S1 and S14, and leucine levels significantly decreased in S14. Phenylalanine levels significantly increased in S1 and S3, and tyrosine levels significantly increased in S1. The Fischer ratio (branched-chain/aromatic amino acids) significantly decreased in S1 and S3. In multiple regression analysis, changes in serum taurine levels were related to the white blood cell count in S1 and S3, and inversely related to alanine aminotransferase levels in S14. Changes in serum glutamine levels were negatively related to C-reactive protein levels in S3. Serum glutamine levels decreased in S3 and S14, and tended to increase in U3, suggesting a deficiency of glutamate resulting from the invasive surgical procedure. CONCLUSIONS: These findings highlight the usefulness of metabolome analysis for characterizing perioperative patterns after liver resection. The observed amino acid pattern, including the reduction in Fischer ratio, underscores the need for specialized nutritional support.


Assuntos
Carcinoma Hepatocelular/cirurgia , Hepatectomia , Neoplasias Hepáticas/cirurgia , Metaboloma , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/urina , Idoso , Feminino , Humanos , Fígado/cirurgia , Masculino , Assistência Perioperatória/métodos
19.
J Clin Biochem Nutr ; 63(3): 181-191, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30487667

RESUMO

Excessive phosphate intake has been positively associated with renal and vascular dysfunction, conversely negatively associated with body fat accumulation. We investigated the effect of a high-phosphate diet on the expression of lipid metabolic genes in white adipose tissue and liver. Male 8-week-old Sprague-Dawley rats were fed a control diet containing 0.6% phosphate or a high-phosphate diet containing 1.5% phosphate for 4 weeks. In comparison to the control group, the HP group showed a significantly lower body fat mass and fasting plasma insulin level alongside decreased lipogenic and increased lipolytic gene expression in visceral fat. Additionally, the expression of genes involved in hepatic lipogenesis, hepatic glycogenesis, and triglyceride accumulation decreased in the high-phosphate group. Exogenous phosphate, parathyroid hormone, and fibroblast growth factor 23 did not directly affect the expression of lipolytic or lipogenic genes in 3T3-L1 adipocytes and HepG2 hepatocytes. Thus, the high-phosphate diet suppressed the activity of white adipose tissue by increasing lipolytic gene expression and decreasing lipogenic gene expression. These effects could have been caused by the lowered fasting plasma insulin level that occurred in response to the high-phosphate diet, but were not directly caused by the increases in plasma phosphate or phosphaturic hormones.

20.
J Med Invest ; 65(3.4): 203-207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30282861

RESUMO

Humans have a high preference for fat, and its excessive intake leads to obesity. This study aimed to investigate the effects of dose-dependent fat intake on biological responses and postprandial appetite sensation in healthy adult subjects. Age and body mass index were 29 ± 1 years and 21.1 ± 0.4 kg/m2, respectively. We conducted a randomized, crossover trial and measured laboratory data and appetite sensation via the visual analog scale. Each participant was provided with four different test meals. They consisted of common, basic foods and contained 75 g liquid glucose and 4 slices of crackers to which 0 g butter (control), 10 g butter (B10), 20 g butter (B20), and 40 g butter (B40) were added, respectively. The results indicated that single ingestion of butter did not influence laboratory values of glucose, insulin, glucose-dependent insulinotropic polypeptide (GIP), total bile acids, or high-sensitivity CRP (hs-CRP). Regarding postprandial appetite sensation, appetite ratings for fullness were the highest after the B40 meal (p < 0.05);however, satisfaction ratings were not significantly different after the ingestion of this meal. Ratings were significantly different after the B20 meal. In conclusion, healthy adult subjects experienced fullness and satisfaction after ingesting 20-40 g of butter. J. Med. Invest. 65:203-207, August, 2018.


Assuntos
Apetite/efeitos dos fármacos , Glicemia/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Insulina/sangue , Adulto , Apetite/fisiologia , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Período Pós-Prandial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA