Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Brain Sci ; 14(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672005

RESUMO

Although "brain health" has many definitions, the core definition is the maintenance of optimal brain structure and function [...].

3.
Brain Sci ; 14(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38539673

RESUMO

Sensory processing is a fundamental aspect of the nervous system that plays a pivotal role in the cognitive decline observed in older individuals with dementia. The "sensory diet", derived from sensory integration theory, may provide a tailored approach to modulating sensory experiences and triggering neuroplastic changes in the brain in individuals with dementia. Therefore, this review aimed to investigate the current knowledge regarding the sensory diet and its potential application to dementia. This review encompassed an extensive search across multiple databases, including PubMed, Google Scholar, covering articles published from 2010 to 2023. Keywords such as "sensory integration", "sensory modulation", "healthy aging", and "dementia" were utilized to identify relevant studies. The types of materials retrieved included peer-reviewed articles, systematic reviews, and meta-analyses, ensuring a comprehensive overview of the current research landscape. This article offers a comprehensive exploration of the effectiveness of sensory diets such as tactile stimulation, auditory therapies, and visual interventions, which have demonstrated noteworthy efficacy in addressing challenges linked to aging and dementia. Research findings consistently report positive outcomes, such as improved cognitive function, elevated emotional well-being, and enhanced overall quality of life in older individuals. Furthermore, we found that the integration of sensory diets with the metaverse, augmented reality, and virtual reality opens up personalized experiences, fostering cognitive stimulation and emotional well-being for individuals during aging. Therefore, we conclude that customized sensory diets, based on interdisciplinary cooperation and leveraging technological advancements, are effective in optimizing sensory processing and improve the overall well-being of older individuals contending with sensory modulation challenges and dementia.

5.
Brain Sci ; 13(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979331

RESUMO

As there is no curative treatment for dementia, including Alzheimer's disease (AD), it is important to establish an optimal nonpharmaceutical preventive intervention. Physical inactivity is a representative modifiable risk factor for dementia, especially for AD in later life (>65 years). As physical activity and exercise are inexpensive and easy to initiate, they may represent an effective nonpharmaceutical intervention for the maintenance of cognitive function. Several studies have reported that physical activity and exercise interventions are effective in preventing cognitive decline and dementia. This review outlines the effects of physical activity and exercise-associated interventions in older adults with and without cognitive impairment and subsequently summarizes their possible mechanisms. Furthermore, this review describes the differences between two types of physical exercise-open-skill exercise (OSE) and closed-skill exercise (CSE)-in terms of their effects on cognitive function. Aerobic physical activity and exercise interventions are particularly useful in preventing cognitive decline and dementia, with OSE exerting a stronger protective effect on cognitive functions than CSE. Therefore, the need to actively promote physical activity and exercise interventions worldwide is emphasized.

6.
Neurosci Lett ; 800: 137135, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36804074

RESUMO

BACKGROUND: The amygdala is pivotal in emotional face processing. Spatial frequencies (SFs) of visual images are divided and processed via two visual pathways: low spatial frequency (LSF) information is conveyed by the magnocellular pathway, while the parvocellular pathway carries high spatial frequency information. We hypothesized that altered amygdala activity might underlie atypical social communication caused by changes in both conscious and non-conscious emotional face processing in the brain in individuals with autism spectrum disorder (ASD). METHOD: Eighteen adults with ASD and 18 typically developing (TD) peers participated in this study. Spatially filtered fearful- and neutral-expression faces and object stimuli were presented under supraliminal or subliminal conditions, and neuromagnetic responses in the amygdala were measured using 306-channel whole-head magnetoencephalography. RESULTS: The latency of the evoked responses at approximately 200 ms to unfiltered neutral face stimuli and object stimuli in the ASD group was shorter than that in the TD group in the unaware condition. Regarding emotional face processing, the evoked responses in the ASD group were larger than those in the TD group under the aware condition. The later positive shift during 200-500 ms (ARV) was larger than that in the TD group, regardless of awareness. Moreover, ARV to HSF face stimuli was larger than that to the other spatial filtered face stimuli in the aware condition. CONCLUSION: Regardless of awareness, ARV might reflect atypical face information processing in the ASD brain.


Assuntos
Transtorno do Espectro Autista , Magnetoencefalografia , Humanos , Adulto , Transtorno do Espectro Autista/psicologia , Medo , Emoções/fisiologia , Tonsila do Cerebelo , Expressão Facial
7.
Neuroreport ; 34(3): 150-155, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608144

RESUMO

Autism spectrum disorder (ASD) is characterized by social communicative disturbance. Social communication requires rapid processing and accurate cognition regarding others' emotional expressions. Previous electrophysiological studies have attempted to elucidate the processes underlying atypical face-specific N170 responses to emotional faces in ASD. The present study explored subliminal affective priming effects (SAPEs) on the N170 response and time-frequency analysis of intertrial phase coherence (ITPC) for the N170 in ASD. Fifteen participants [seven participants with ASD and eight typically developing (TD) controls] were recruited for the experiment. Event-related potentials were recorded with a 128-channel electroencephalography device while participants performed an emotional face judgment task. The results revealed enhanced N170 amplitude for supraliminal target-face stimuli when they were preceded by subliminal fearful-face stimuli, in both the ASD and TD groups. Interestingly, TD participants exhibited higher alpha-ITPC in the subliminal fearful-face priming condition in the right face-specific area in the N170 time window. In contrast, there were no significant differences in ITPC in any frequency bands between the subliminal fearful and neutral priming conditions in the ASD group. Asynchronous phase-locking neural activities in the face-specific area may underlie impaired nonconscious face processing in ASD, despite the presence of common features of SAPEs for the N170 component in both the ASD and TD groups.


Assuntos
Transtorno do Espectro Autista , Humanos , Potenciais Evocados/fisiologia , Eletroencefalografia , Emoções/fisiologia , Medo
8.
J Pers Med ; 12(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35055326

RESUMO

Patients show subtle changes in daily behavioral patterns, revealed by traditional assessments (e.g., performance- or questionnaire-based assessments) even in the early stage of Alzheimer's disease (AD; i.e., the mild cognitive impairment (MCI) stage). An increase in studies on the assessment of daily behavioral changes in patients with MCI and AD using digital technologies (e.g., wearable and nonwearable sensor-based assessment) has been noted in recent years. In addition, more objective, quantitative, and realistic evidence of altered daily behavioral patterns in patients with MCI and AD has been provided by digital technologies rather than traditional assessments. Therefore, this study hypothesized that the assessment of daily behavioral changes with digital technologies can replace or assist traditional assessment methods for early MCI and AD detection. In this review, we focused on research using nonwearable sensor-based in-home assessment. Previous studies on the assessment of behavioral changes in MCI and AD using traditional performance- or questionnaire-based assessments are first described. Next, an overview of previous studies on the assessment of behavioral changes in MCI and AD using nonwearable sensor-based in-home assessment is provided. Finally, the usefulness and problems of nonwearable sensor-based in-home assessment for early MCI and AD detection are discussed. In conclusion, this review stresses that subtle changes in daily behavioral patterns detected by nonwearable sensor-based in-home assessment can be early MCI and AD biomarkers.

9.
Brain Behav ; 10(6): e01649, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367678

RESUMO

INTRODUCTION: The right fusiform face area (FFA) is important for face recognition, whereas the left visual word fusiform area (VWFA) is critical for word processing. Nevertheless, the early stages of unconscious and conscious face and word processing have not been studied systematically. MATERIALS AND METHODS: To explore hemispheric differences for face and word recognition, we manipulated the visual field (left vs. right) and stimulus duration (subliminal [17 ms] versus supraliminal [300 ms]). We recorded P100 and N170 peaks with high-density ERPs in response to faces/objects or Japanese words/scrambled words in 18 healthy young subjects. RESULTS: Contralateral P100 was larger than ipsilateral P100 for all stimulus types in the supraliminal, but not subliminal condition. The face- and word-N170s were not evoked in the subliminal condition. The N170 amplitude for the supraliminal face stimuli was significantly larger than that for the objects, and right hemispheric specialization was found for face recognition, irrespective of stimulus visual hemifield. Conversely, the supraliminal word-N170 amplitude was not significantly modulated by stimulus type, visual field, or hemisphere. CONCLUSIONS: These results suggest that visual awareness is crucial for face and word recognition. Our study using hemifield stimulus presentation further demonstrates the robust right FFA for face recognition but not the left VWFA for word recognition in the Japanese brain.


Assuntos
Reconhecimento Facial , Eletroencefalografia , Potenciais Evocados , Lateralidade Funcional , Idioma , Reconhecimento Visual de Modelos , Estimulação Luminosa
10.
Neurosci Lett ; 711: 134402, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31356844

RESUMO

Motion perceptual deficits are common in Alzheimer's disease (AD). Although the posterior parietal cortex is thought to play a critical role in these deficits, it is currently unclear whether the primary visual cortex (V1) contributes to these deficits in AD. To elucidate this issue, we investigated the net activity or connectivity within V1 in 17 amnestic mild cognitive impairment (aMCI) patients, 17 AD patients and 17 normal controls (NC) using functional magnetic resonance imaging (fMRI). fMRI was recorded under two conditions: visual motion stimulation and resting-state. The net activity or connectivity within V1 extracted by independent component analysis (ICA) was significantly increased during visual motion stimuli compared with that of the resting-state condition in NC, but not in aMCI or AD patients. These findings suggest the alteration of the net activity or connectivity within V1, which may contribute to the previously reported motion perceptual deficits in aMCI and AD. Therefore, the decreased net V1 activity measured as the strength of the ICA component may provide a new disease biomarker for early detection of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Córtex Visual/fisiopatologia , Idoso , Doença de Alzheimer/diagnóstico por imagem , Progressão da Doença , Diagnóstico Precoce , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Córtex Visual/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiopatologia
11.
Front Neurol ; 9: 750, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245666

RESUMO

Driving requires multiple cognitive functions including visuospatial perception and recruits widespread brain networks. Recently, traffic accidents in dementia, particularly in Alzheimer disease spectrum (ADS), have increased and become an urgent social problem. Therefore, it is necessary to develop the objective and reliable biomarkers for driving ability in patients with ADS. Interestingly, even in the early stage of the disease, patients with ADS are characterized by the impairment of visuospatial function such as radial optic flow (OF) perception related to self-motion perception. For the last decade, we have studied the feasibility of event-related potentials (ERPs) in response to radial OF in ADS and proposed that OF-ERPs provided an additional information on the alteration of visuospatial perception in ADS (1, 2). Hence, we hypothesized that OF-ERPs can be a possible predictive biomarker of driving ability in ADS. In this review, the recent concept of neural substrates of driving in healthy humans are firstly outlined. Second, we mention the alterations of driving performance and its brain network in ADS. Third, the current status of assessment tools for driving ability is stated. Fourth, we describe ERP studies related to driving ability in ADS. Further, the neural basis of OF processing and OF-ERPs in healthy humans are mentioned. Finally, the application of OF-ERPs to ADS is described. The aim of this review was to introduce the potential use of OF-ERPs for assessment of driving ability in ADS.

12.
Front Neurol ; 9: 1086, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619046

RESUMO

Background: Mental disorientation in time, space, and with respect to people is common in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). Recently, a high-resolution functional MRI (fMRI) study revealed that the inferior parietal lobule (IPL) and precuneus are important regions related to mental orientation in healthy individuals. We hypothesized that the IPL and/or precuneus are crucial regions for mental disorientation in patients with amnestic MCI (aMCI). Therefore, our aim was to assess our hypothesis in these patients using voxel-based morphometry (VBM). Methods: Fifteen patients with aMCI participated. The Neurobehavioral Cognitive Status Examination (COGNISTAT) as well as the Mini-Mental State Examination (MMSE) were used to evaluate mental disorientation. Subsequently, we used VBM analysis to identify brain regions that exhibited gray matter (GM) volume loss associated with mental disorientation. Based on our hypothesis, four brain regions (bilateral IPLs and precuneus) were selected as regions of interest (ROIs). Results: We found a significant decreased GM volume in the right IPL, which was correlated with lower orientation scores on the COGNISTAT. In contrast, GM volume in other ROIs did not show a significant positive correlation with mental disorientation. Regarding the MMSE, no significant reduction in GM associated with decline in orientation were observed in any ROI. Conclusion: We found the significant relationship between low GM volume in the right IPL and severity of mental disorientation. Therefore, the right IPL is responsible for mental disorientation in aMCI.

13.
Front Neurosci ; 11: 627, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170625

RESUMO

Individuals with autism spectrum disorder (ASD) show superior performance in processing fine details; however, they often exhibit impairments of gestalt face, global motion perception, and visual attention as well as core social deficits. Increasing evidence has suggested that social deficits in ASD arise from abnormal functional and structural connectivities between and within distributed cortical networks that are recruited during social information processing. Because the human visual system is characterized by a set of parallel, hierarchical, multistage network systems, we hypothesized that the altered connectivity of visual networks contributes to social cognition impairment in ASD. In the present review, we focused on studies of altered connectivity of visual and attention networks in ASD using visual evoked potentials (VEPs), event-related potentials (ERPs), and diffusion tensor imaging (DTI). A series of VEP, ERP, and DTI studies conducted in our laboratory have demonstrated complex alterations (impairment and enhancement) of visual and attention networks in ASD. Recent data have suggested that the atypical visual perception observed in ASD is caused by altered connectivity within parallel visual pathways and attention networks, thereby contributing to the impaired social communication observed in ASD. Therefore, we conclude that the underlying pathophysiological mechanism of ASD constitutes a "connectopathy."

14.
PLoS One ; 12(2): e0170239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28146575

RESUMO

Individuals with autism spectrum disorder (ASD) show superior performance in processing fine detail, but often exhibit impaired gestalt face perception. The ventral visual stream from the primary visual cortex (V1) to the fusiform gyrus (V4) plays an important role in form (including faces) and color perception. The aim of this study was to investigate how the ventral stream is functionally altered in ASD. Visual evoked potentials were recorded in high-functioning ASD adults (n = 14) and typically developing (TD) adults (n = 14). We used three types of visual stimuli as follows: isoluminant chromatic (red/green, RG) gratings, high-contrast achromatic (black/white, BW) gratings with high spatial frequency (HSF, 5.3 cycles/degree), and face (neutral, happy, and angry faces) stimuli. Compared with TD controls, ASD adults exhibited longer N1 latency for RG, shorter N1 latency for BW, and shorter P1 latency, but prolonged N170 latency, for face stimuli. Moreover, a greater difference in latency between P1 and N170, or between N1 for BW and N170 (i.e., the prolongation of cortico-cortical conduction time between V1 and V4) was observed in ASD adults. These findings indicate that ASD adults have enhanced fine-form (local HSF) processing, but impaired color processing at V1. In addition, they exhibit impaired gestalt face processing due to deficits in integration of multiple local HSF facial information at V4. Thus, altered ventral stream function may contribute to abnormal social processing in ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Expressão Facial , Percepção de Forma , Adulto , Transtorno do Espectro Autista/diagnóstico , Estudos de Casos e Controles , Potenciais Evocados Visuais , Feminino , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Córtex Visual/fisiopatologia , Adulto Jovem
15.
Exp Brain Res ; 234(11): 3279-3290, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27401472

RESUMO

'Time-shrinking perception (TSP)' is a unique perceptual phenomenon in which the duration of two successive intervals (T1 and T2) marked by three auditory stimuli is perceived as equal even when they are physically different. This phenomenon provides a link between time and working memory; however, previous studies have mainly been performed on the auditory modality but not the visual modality. To clarify the neural mechanism of visual TSP, we performed a psychophysical experiment and recorded event-related potentials (ERPs) under different T1/T2 combinations. Three successive black/white sinusoidal gratings (30 ms duration) were presented to the participants. In the psychophysical experiment, either T1 or T2 was varied from 240 to 560 ms in 40-ms steps, while T2 or T1 was fixed at 400 ms. Participants judged whether T1 and T2 were equal or not by pressing a button. ERPs were recorded from 128 scalp electrodes, while T1 was varied from 240, 320, and 400 ms with the 400 ms T2 duration, and vice versa. Behavioral data showed asymmetrical assimilation: When -80 ms ≤ (T1 - T2) ≤ +120 ms, TSP was observed in the T1-varied condition. When -120 ms ≤ (T1 - T2) ≤ +80 ms, it was also observed in the T2-varied condition. These asymmetric time ranges in vision were different from those in the auditory modality. ERP data showed that contingent negative variation (CNV) appeared in the fronto-central region at around 300-500 ms during T2 presentation in the T1 < T2 condition. In the /240/400/ pattern, the CNV amplitude was decreased at around 350 ms. In contrast, P3 appeared at the parietal region about 450-650 ms after T2 in the T1 > T2 condition. In the /400/240/ pattern, P3 amplitude was greater than those of other temporal patterns. These neural responses corresponded to participants' perception that T1 and T2 were not equal. The neural responses in the fronto-central region were involved with endogenous temporal attention for discrimination. Moreover, neural responses in the parietal region were engaged in exogenous temporal attention. Therefore, fronto-parietal neural responses underlie temporal perception in vision.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados/fisiologia , Julgamento/fisiologia , Percepção do Tempo/fisiologia , Adulto , Análise de Variância , Eletroencefalografia , Feminino , Humanos , Masculino , Psicofísica , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
16.
J Alzheimers Dis ; 53(2): 661-76, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27232213

RESUMO

Visual dysfunctions are common in Alzheimer's disease (AD). Our aim was to establish a neurophysiological biomarker for amnestic mild cognitive impairment (aMCI). Visual evoked potentials (VEPs) were recorded in aMCI patients who later developed AD (n = 15) and in healthy older (n = 15) and younger controls (n = 15). Visual stimuli were optimized to separately activate lower and higher levels of the ventral and dorsal streams. We compared VEP parameters across the three groups of participants and conducted a linear correlation analysis between VEPs and data from neuropsychological tests. We then used a receiver operating characteristic (ROC) analysis to discriminate those with aMCI from those who were healthy older adults. The latency and phase of VEPs to lower-level stimuli (chromatic and achromatic gratings) were significantly affected by age but not by cognitive decline. Conversely, VEP latencies for higher-ventral (faces and kanji-words) and dorsal (kana-words and optic flow motion) stimuli were not affected by age, but they were significantly prolonged in aMCI patients. Interestingly, VEPs for higher-dorsal stimuli were related to outcomes of neuropsychological tests. Furthermore, the ROC analysis showed that the highest areas under the curve were obtained for VEP latencies in response to higher-dorsal stimuli. These results suggest aMCI-related functional impairment specific to higher-level visual processing. Further, dysfunction in the higher-level of the dorsal stream could be an early indicator of cognitive decline. Therefore, we conclude that VEPs associated with higher-level dorsal stream activity can be a sensitive biomarker for early detection of aMCI.


Assuntos
Disfunção Cognitiva/complicações , Potenciais Evocados Visuais/fisiologia , Transtornos da Visão/etiologia , Percepção Visual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Percepção de Cores/fisiologia , Eletroencefalografia , Feminino , Seguimentos , Humanos , Masculino , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Curva ROC , Índice de Gravidade de Doença , Transtornos da Visão/diagnóstico , Adulto Jovem
17.
Physiol Rep ; 3(5)2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25975645

RESUMO

Face identification and categorization are essential for social communication. The N170 event-related potential (ERP) is considered to be a biomarker of face perception. To elucidate the neural basis of species-dependent face processing, we recorded 128-ch high-density ERPs in 14 healthy adults while they viewed the images of morphed faces. The morphed stimuli contained different proportions of human and monkey faces, and the species boundary was shifted away from the center of the morph continuum. Three experiments were performed to determine how task requirement, facial orientation, and spatial frequency (SF) of visual stimuli affected ERPs. In an equal SF condition, the latency, and amplitude of the occipital P100 for upright faces were modulated in a monotonic-like fashion by the level of morphing. In contrast, the N170 latency for upright faces was modulated in a step-like fashion, showing a flexion point that may reflect species discrimination. Although N170 amplitudes for upright faces were not modulated by morph level, they were modulated in a monotonic-like fashion by inverted faces. The late positive (LP) component (350-550 msec) in the parietal region was modulated in a U-shaped function by morph level during a categorization task, but not in a simple reaction task. These results suggest that P100 reflects changes in the physical properties of faces and that N170 is involved in own-species selectivity. The LP component seems to represent species categorization that occurs 350 msec after stimulus onset.

18.
Cereb Cortex ; 24(6): 1529-39, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23349223

RESUMO

It has been revealed that spontaneous coherent brain activity during rest, measured by functional magnetic resonance imaging (fMRI), self-organizes a "small-world" network by which the human brain could sustain higher communication efficiency across global brain regions with lower energy consumption. However, the state-dependent dynamics of the network, especially the dependency on the conscious state, remain poorly understood. In this study, we conducted simultaneous electroencephalographic recording with resting-state fMRI to explore whether functional network organization reflects differences in the conscious state between an awake state and stage 1 sleep. We then evaluated whole-brain functional network properties with fine spatial resolution (3781 regions of interest) using graph theoretical analysis. We found that the efficiency of the functional network evaluated by path length decreased not only at the global level, but also in several specific regions depending on the conscious state. Furthermore, almost two-thirds of nodes that showed a significant decrease in nodal efficiency during stage 1 sleep were categorized as the default-mode network. These results suggest that brain functional network organizations are dynamically optimized for a higher level of information integration in the fully conscious awake state, and that the default-mode network plays a pivotal role in information integration for maintaining conscious awareness.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Descanso/fisiologia , Vigília/fisiologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/fisiologia , Processamento de Sinais Assistido por Computador , Fases do Sono/fisiologia
19.
Exp Neurol ; 250: 313-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120467

RESUMO

To better understand how voice and linguistic processing systems develop during the preschool years, changes in cerebral oxygenation were measured bilaterally from temporal areas using multi-channel near-infrared spectroscopy (NIRS). NIRS was recorded while children listened to their mothers' voice (MV), an unfamiliar female voice (UV) and environmental sound (ES) stimuli. Twenty typical children (aged 3-6years) were divided into younger (Y) (n=10, male=5; aged 3-4.5years) and older (O) (n=10, male=5; aged 4.5-6years) groups. In the Y group, while MV stimuli significantly activated anterior temporal areas with a right predominance compared to ES stimuli, they significantly activated left mid-temporal areas compared to UV stimuli. These temporal activations were significantly higher in the Y group compared to the O group. Furthermore, only the O group exhibited significant habituation and gender differences in the left mid-temporal area during MV perception. These findings suggest that the right voice-related and the left language-related temporal areas already exist in the Y group, and that MV stimuli modulate these areas differently in the two age groups. Therefore, we conclude that a mother's voice plays an important role in the maturation of the voice and linguistic processing systems, particularly during the first half of the preschool-aged period. This role may decrease during the latter half of the preschool-aged period due to rapid development of these systems as children age.


Assuntos
Encéfalo/crescimento & desenvolvimento , Linguística , Percepção da Fala/fisiologia , Voz/fisiologia , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho
20.
Front Hum Neurosci ; 7: 403, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23898256

RESUMO

OBJECTIVE: Mismatch negativity (MMN) and P3 are unique ERP components that provide objective indices of human cognitive functions such as short-term memory and prediction. Bipolar disorder (BD) is an endogenous psychiatric disorder characterized by extreme shifts in mood, energy, and ability to function socially. BD patients usually show cognitive dysfunction, and the goal of this study was to access their altered visual information processing via visual MMN (vMMN) and P3 using windmill pattern stimuli. METHODS: Twenty patients with BD and 20 healthy controls matched for age, gender, and handedness participated in this study. Subjects were seated in front of a monitor and listened to a story via earphones. Two types of windmill patterns (standard and deviant) and white circle (target) stimuli were randomly presented on the monitor. All stimuli were presented in random order at 200-ms durations with an 800-ms inter-stimulus interval. Stimuli were presented at 80% (standard), 10% (deviant), and 10% (target) probabilities. The participants were instructed to attend to the story and press a button as soon as possible when the target stimuli were presented. Event-related potentials (ERPs) were recorded throughout the experiment using 128-channel EEG equipment. vMMN was obtained by subtracting standard from deviant stimuli responses, and P3 was evoked from the target stimulus. RESULTS: Mean reaction times for target stimuli in the BD group were significantly higher than those in the control group. Additionally, mean vMMN-amplitudes and peak P3-amplitudes were significantly lower in the BD group than in controls. CONCLUSIONS: Abnormal vMMN and P3 in patients indicate a deficit of visual information processing in BD, which is consistent with their increased reaction time to visual target stimuli. SIGNIFICANCE: Both bottom-up and top-down visual information processing are likely altered in BD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA