Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Technol ; 44(21): 3229-3235, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35302914

RESUMO

Bioelectrochemical systems (BESs) are emerging techniques that use biological production of current for versatile activities, including energy recovery and bioremediation. The development of high-performance three-dimensional (3D) electrodes has attracted attention for facilitating current production in BESs. Carbon-based electrodes have been commonly used in BESs, but metal electrodes are not generally employed because of their low biocompatibility with microbes. In this study, 3D stainless-steel electrodes, composed of octahedral lattice, were fabricated using the 3D printing technique. Heat treatment was conducted to form an iron-oxide layer on the electrode surface for increasing biocompatibility. Another crucial parameter that determines current production is the pitch length of a lattice electrode as it affects the surface area and substrate diffusion. The pitch length was optimized by testing the lattice electrodes with pitches ranging from 1.5 mm to 6.0 mm. The highest current, obtained with the 3.0 mm-pitch electrode, was 50% higher than that obtained with common 3D carbon-felt electrodes. These results demonstrate the usefulness of 3D lattice-structured metal electrodes in BESs.


Assuntos
Fontes de Energia Bioelétrica , Carbono , Metais , Eletrodos , Impressão Tridimensional
2.
Sci Rep ; 10(1): 8975, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488169

RESUMO

Establishing processing routes for obtaining metal-matrix composites (MMCs) with uniformly-dispersed reinforcements is one of the main subjects in additively manufactured composite materials to achieve designed microstructures and mechanical properties. Here we report on the microstructural features of compositionally graded WC/Co-alloy composites additively manufactured by multi-beam laser directed energy deposition (multi-beam LDED). For tailoring microstructures of compositionally graded WC/Co-alloy composites with uniformly-dispersed reinforcements, the combinational method: the laser-beam defocus function in the multi-beam LDED system and granulated powder was attempted. By laser defocusing in the multi-beam LDED system, composites with uniformly-dispersed WC particles in Co alloy matrix was successfully obtained due to melting of Co bond in WC-12 wt.%Co granulated particles. It was found that the laser defocusing of multi-beam lasers affects temperature increase of flying powder during the laser focusing area, resulting in change of processing mode from melt-pool mode to thermal spray mode. The preferable property gradients in the WC/Co-alloy composites could be obtained by controlling the feeding rate of the powders and laser-beam defocus. These experimental results demonstrated the effectiveness of the laser-beam-defocus function in the multi-beam LDED system as a key factor for tailoring microstructures of additively-manufactured functionally graded MMCs with uniformly-dispersed reinforcements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA