Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS One ; 10(2): e0117914, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25689862

RESUMO

Extracellular signal-regulated kinases (ERKs) play critical roles in numerous cellular processes, including proliferation and differentiation. ERK5 contains a kinase domain at the N-terminal, and the unique extended C-terminal includes multiple autophosphorylation sites that enhance ERK5-dependent transcription. However, the impact of phosphorylation at the various sites remain unclear. In this study, we examined the role of phosphorylation at the ERK5 C-terminal. We found that a constitutively active MEK5 mutant phosphorylated ERK5 at the TEY motif, resulting in the sequential autophosphorylation of multiple C-terminal residues, including Thr732 and Ser769/773/775. However, when ERK1/2 was selectively activated by an oncogenic RAS mutant, ERK5 phosphorylation at Thr732 was induced without affecting the phosphorylation status at TEY or Ser769/773/775. The Thr732 phosphorylation was U0126-sensitive and was observed in a kinase-dead mutant of ERK5 as well, suggesting that ERK1/2 can phosphorylate ERK5 at Thr732. This phosphorylation was also promoted by epidermal growth factor and nerve growth factor in HEK293 and PC12 cells, respectively. The ERK5-T732A mutant was localized in the cytosol under basal conditions. In contrast, ERK5 phosphorylated at Thr732 via the RAS-ERK1/2 pathway and ERK5-T732E, which mimics the phosphorylated form, were localized in both the nucleus and cytosol. Finally, ER-32A and U0126 blocked ERK5-dependent MEF2C transcriptional activity. Based on these findings, we propose a novel cross-talk mechanism in which ERK1/2, following activation by growth factor stimulation, phosphorylates ERK5 at Thr732. This phosphorylation event is responsible for ERK5 nuclear localization and ERK5-dependent transcription.


Assuntos
Núcleo Celular/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/química , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Treonina/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células PC12 , Fosforilação , Ratos
2.
J Biol Chem ; 284(35): 23564-73, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19581298

RESUMO

Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation, and gene expression. ERK5 is approximately twice the size of ERK1/2, and its amino-terminal half contains the kinase domain that shares homology with ERK1/2 and TEY activation motif, whereas the carboxyl-terminal half is unique. In this study, we examined a physiological role of ERK5 in rat pheochromocytoma cells (PC12), comparing it with ERK1/2. Nerve growth factor (NGF) induced phosphorylation of both ERK5 and ERK1/2, whereas the cAMP analog dibutyryl cAMP (Bt(2)cAMP) caused only ERK1/2 phosphorylation. U0126, at 30 mum, that blocks ERK1/2 signaling selectively attenuated neurite outgrowth induced by NGF and Bt(2)cAMP, but BIX02188 and BIX02189, at 30 mum, that block ERK5 signaling and an ERK5 dominant-negative mutant suppressed only NGF-induced neurite outgrowth. Next, we examined the expression of tyrosine hydroxylase, a rate-limiting enzyme of catecholamine biosynthesis. Both NGF and Bt(2)cAMP increased tyrosine hydroxylase gene promoter activity in an ERK1/2-dependent manner but was ERK5-independent. However, when both ERK5 and ERK1/2 signalings were inhibited, tyrosine hydroxylase protein up-regulation by NGF and Bt(2)cAMP was abolished, because of the loss of stabilization of tyrosine hydroxylase protein by ERK5. Taking these results together, ERK5 is involved in neurite outgrowth and stabilization of tyrosine hydroxylase in PC12 cells, and ERK5, along with ERK1/2, plays essential roles in the neural differentiation process.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator de Crescimento Neural/metabolismo , Neuritos/enzimologia , Neurogênese , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Proteína Quinase 7 Ativada por Mitógeno/genética , Fator de Crescimento Neural/genética , Células PC12 , Fosforilação , Ratos , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/genética
3.
Cell Signal ; 20(7): 1275-83, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18407464

RESUMO

Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation and gene expression. ERK5 is twice the size of ERK1/2, the amino-terminal half contains the kinase domain that shares the homology with ERK1/2 and TEY activation motif, whereas the carboxy-terminal half is unique. In this study, we examined the cross-talk mechanism between G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, focusing on ERK1/2 and 5. The pretreatment of rat pheochromocytoma cells (PC12) with pertussis toxin (PTX) specifically enhanced epidermal growth factor (EGF)-induced ERK5 phosphorylation. In addition, lysophosphatidic acid (LPA) attenuated the EGF-induced ERK5 phosphorylation in LPA(1) receptor- and G(i/o)-dependent manners. On the other hand, LPA alone activated ERK1/2 via Gbetagamma subunits and Ras and potentiated EGF-induced ERK1/2 phosphorylation at late time points. These results suggest G(i/o) negatively regulates ERK5, while it positively regulates ERK1/2. LPA did not affect cAMP levels after EGF treatment, and the reagents promoting cAMP production such as forskolin and cholera toxin also attenuated the EGF-induced ERK5 phosphorylation, indicating that the inhibitory effect of LPA on ERK5 inhibition via G(i/o) is not due to inhibition of adenylyl cyclase by Galpha(i/o). However, the inhibitory effect of LPA on ERK5 was abolished in PC12 cells stably overexpressing C-terminus of GPCR kinase2 (GRK2), and overexpression of Gbeta(1) and gamma(2) subunits also suppressed ERK5 phosphorylation by EGF. In response to LPA, Gbetagamma subunits interacted with EGF receptor in a time-dependent manner. These results strongly suggest that LPA negatively regulates the EGF-induced ERK5 phosphorylation through Gbetagamma subunits.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades Proteicas/metabolismo , Animais , Colforsina/farmacologia , AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Células PC12 , Toxina Pertussis/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA