Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sens ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079053

RESUMO

Microphysiological systems have attracted attention because of their use in drug screening. However, it is challenging to measure cell functions in real time using a device. In this study, we developed a cell culture device using a porous membrane electrode for in situ electrochemical glucose measurements for cell analysis. First, a porous membrane electrode was fabricated and electrochemically evaluated for enzyme-free glucose measurement. Subsequently, the glucose uptake of MCF-7 spheroids was evaluated using living spheroids, fixed spheroids, supernatants, and glucose transporter inhibitor-treated spheroids. Conventionally, the direct optical measurement of glucose uptake requires fluorescence-labeled glucose derivatives. In addition, the glucose uptake can be evaluated by measuring the glucose concentration in the medium by optical or electrochemical measurements. However, glucose needs to be consumed in the entire cell culture medium, which needs a long culture time. In contrast, our system can measure glucose in approximately 5 min without any labels because of in situ electrochemical measurements. This system can be used for in situ measurements in in vitro cell culture systems, including organ-on-a-chip for drug screening.

2.
Polymers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891433

RESUMO

The alveoli, critical sites for gas exchange in the lungs, comprise alveolar epithelial cells and pulmonary capillary endothelial cells. Traditional experimental models rely on porous polyethylene terephthalate or polycarbonate membranes, which restrict direct cell-to-cell contact. To address this limitation, we developed AlveoMPU, a new foam-based mortar-like polyurethane-formed alveolar model that facilitates direct cell-cell interactions. AlveoMPU features a unique anisotropic mortar-shaped configuration with larger pores at the top and smaller pores at the bottom, allowing the alveolar epithelial cells to gradually extend toward the bottom. The underside of the film is remarkably thin, enabling seeded pulmonary microvascular endothelial cells to interact with alveolar epithelial cells. Using AlveoMPU, it is possible to construct a bilayer structure mimicking the alveoli, potentially serving as a model that accurately simulates the actual alveoli. This innovative model can be utilized as a drug-screening tool for measuring transepithelial electrical resistance, assessing substance permeability, observing cytokine secretion during inflammation, and evaluating drug efficacy and pharmacokinetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA