Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
NPJ Vaccines ; 9(1): 67, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553525

RESUMO

Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.

2.
Lancet Infect Dis ; 23(12): 1408-1417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544326

RESUMO

BACKGROUND: Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available. METHODS: In this phase 1, open-label, dose-escalation trial we evaluated the safety, tolerability, and immunogenicity of a monovalent chimpanzee adenovirus 3 vaccine against Sudan Ebola virus (cAd3-EBO S) at Makerere University Walter Reed Project in Kampala, Uganda. Study participants were recruited from the Kampala metropolitan area using International Review Board-approved written and electronic media explaining the trial intervention. Healthy adults without previous receipt of Ebola, Marburg, or cAd3 vectored-vaccines were enrolled to receive cAd3-EBO S at either 1 × 1010 or 1 × 1011 particle units (PU) in a single intramuscular vaccination and were followed up for 48 weeks. Primary safety and tolerability endpoints were assessed in all vaccine recipients by reactogenicity for the first 7 days, adverse events for the first 28 days, and serious adverse events throughout the study. Secondary immunogenicity endpoints included evaluation of binding antibody and T-cell responses against the Sudan Ebola virus glycoprotein, and neutralising antibody responses against the cAd3 vector at 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT04041570, and is completed. FINDINGS: 40 healthy adults were enrolled between July 22 and Oct 1, 2019, with 20 receiving 1 × 1010 PU and 20 receiving 1 × 1011 PU of cAd3-EBO S. 38 (95%) participants completed all follow-up visits. The cAd3-EBO S vaccine was well tolerated with no severe adverse events. The most common reactogenicity symptoms were pain or tenderness at the injection site (34 [85%] of 40), fatigue (29 [73%] of 40), and headache (26 [65%] of 40), and were mild to moderate in severity. Positive responses for glycoprotein-specific binding antibodies were induced by 2 weeks in 31 (78%) participants, increased to 34 (85%) participants by 4 weeks, and persisted to 48 weeks in 31 (82%) participants. Most participants developed glycoprotein-specific T-cell responses (20 [59%, 95% CI 41-75] of 34; six participants were removed from the T cell analysis after failing quality control parameters) by 4 weeks after vaccination, and neutralising titres against the cAd3 vector were also increased from baseline (90% inhibitory concentration of 47, 95% CI 30-73) to 4 weeks after vaccination (196, 125-308). INTERPRETATION: The cAd3-EBO S vaccine was safe at both doses, rapidly inducing immune responses in most participants after a single injection. The rapid onset and durability of the vaccine-induced antibodies make this vaccine a strong candidate for emergency deployment in Sudan Ebola virus outbreaks. FUNDING: National Institutes of Health via interagency agreement with Walter Reed Army Institute of Research.


Assuntos
Adenovirus dos Símios , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Humanos , Adulto , Doença pelo Vírus Ebola/prevenção & controle , Pan troglodytes , Uganda , Sudão , Ebolavirus/genética , Anticorpos Antivirais , Adenovirus dos Símios/genética , Adenoviridae/genética , Glicoproteínas , Imunogenicidade da Vacina , Método Duplo-Cego
3.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
4.
Nat Med ; 28(5): 1022-1030, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411076

RESUMO

Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ). AAV8-VRC07 was given at doses of 5 × 1010, 5 × 1011 and 2.5 × 1012 vector genomes per kilogram by intramuscular (IM) injection. Primary endpoints of this study were to assess the safety and tolerability of AAV8-VRC07; to determine the pharmacokinetics and immunogenicity of in vivo VRC07 production; and to describe the immune response directed against AAV8-VRC07 vector and its products. Secondary endpoints were to assess the clinical effects of AAV8-VRC07 on CD4 T cell count and VL and to assess the persistence of VRC07 produced in participants. In this cohort, IM injection of AAV8-VRC07 was safe and well tolerated. No clinically significant change in CD4 T cell count or VL occurred during the 1-3 years of follow-up reported here. In participants who received AAV8-VRC07, concentrations of VRC07 were increased 6 weeks (P = 0.008) and 52 weeks (P = 0.016) after IM injection of the product. All eight individuals produced measurable amounts of serum VRC07, with maximal VRC07 concentrations >1 µg ml-1 in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.


Assuntos
Infecções por HIV , HIV-1 , Adulto , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Dependovirus/genética , Anticorpos Anti-HIV , Infecções por HIV/tratamento farmacológico , Humanos
5.
Lancet Respir Med ; 9(10): 1111-1120, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33864736

RESUMO

BACKGROUND: Multiple active vaccination approaches have proven ineffective in reducing the substantial morbidity and mortality caused by respiratory syncytial virus (RSV) in infants and older adults (aged ≥65 years). A vaccine conferring a substantial and sustainable boost in neutralising activity is required to protect against severe RSV disease. To that end, we evaluated the safety and immunogenicity of DS-Cav1, a prefusion F subunit vaccine. METHODS: In this randomised, open-label, phase 1 clinical trial, the stabilised prefusion F vaccine DS-Cav1 was evaluated for dose, safety, tolerability, and immunogenicity in healthy adults aged 18-50 years at a single US site. Participants were assigned to receive escalating doses of either 50 µg, 150 µg, or 500 µg DS-Cav1 at weeks 0 and 12, and were randomly allocated in a 1:1 ratio within each dose group to receive the vaccine with or without aluminium hydroxide (AlOH) adjuvant. After 71 participants had been randomised, the protocol was amended to allow some participants to receive a single vaccination at week 0. The primary objectives evaluated the safety and tolerability at every dose within 28 days following each injection. Neutralising activity and RSV F-binding antibodies were evaluated from week 0 to week 44 as secondary and exploratory objectives. Safety was assessed in all participants who received at least one vaccine dose; secondary and exploratory immunogenicity analysis included all participants with available data at a given visit. The trial is registered with ClinicalTrials.gov, NCT03049488, and is complete and no longer recruiting. FINDINGS: Between Feb 21, 2017, and Nov 29, 2018, 244 participants were screened for eligibility and 95 were enrolled to receive DS-Cav1 at the 50 µg (n=30, of which n=15 with AlOH), 150 µg (n=35, of which n=15 with AlOH), or 500 µg (n=30, of which n=15 with AlOH) doses. DS-Cav1 was safe and well tolerated and no serious vaccine-associated adverse events deemed related to the vaccine were identified. DS-Cav1 vaccination elicited robust neutralising activity and binding antibodies by 4 weeks after a single vaccination (p<0·0001 for F-binding and neutralising antibodies). In analyses of exploratory endpoints at week 44, pre-F-binding IgG and neutralising activity were significantly increased compared with baseline in all groups. At week 44, RSV A neutralising activity was 3·1 fold above baseline in the 50 µg group, 3·8 fold in the 150 µg group, and 4·5 fold in the 500 µg group (p<0·0001). RSV B neutralising activity was 2·8 fold above baseline in the 50 µg group, 3·4 fold in the 150 µg group, and 3·7 fold in the 500 µg group (p<0·0001). Pre-F-binding IgG remained significantly 3·2 fold above baseline in the 50 µg group, 3·4 fold in the 150 µg group, and 4·0 fold in the 500 µg group (p<0·0001). Pre-F-binding serum IgA remained 4·1 fold above baseline in the 50 µg group, 4·3 fold in the 150 µg group, and 4·8 fold in the 500 µg group (p<0·0001). Although a higher vaccine dose or second immunisation elicited a transient advantage compared with lower doses or a single immunisation, neither significantly impacted long-term neutralisation. There was no long-term effect of dose, number of vaccinations, or adjuvant on neutralising activity. INTERPRETATION: In this phase 1 study, DS-Cav1 vaccination was safe and well tolerated. DS-Cav1 vaccination elicited a robust boost in RSV F-specific antibodies and neutralising activity that was sustained above baseline for at least 44 weeks. A single low-dose of pre-F immunisation of antigen-experienced individuals might confer protection that extends throughout an entire RSV season. FUNDING: The National Institutes of Allergy and Infectious Diseases.


Assuntos
Vacinas contra Vírus Sincicial Respiratório , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Método Duplo-Cego , Humanos , Lactente , Pessoa de Meia-Idade , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sinciciais Respiratórios , Vacinas de Subunidades Antigênicas/efeitos adversos , Adulto Jovem
6.
PLoS One ; 14(9): e0222178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31532789

RESUMO

BACKGROUND: Seasonal influenza results in significant morbidity and mortality worldwide, but the currently licensed inactivated vaccines generally have low vaccine efficacies and could be improved. In this phase 1 clinical trial, we compared seasonal influenza vaccine regimens with different priming strategies, prime-boost intervals, and administration routes to determine the impact of these variables on the resulting antibody response. METHODS: Between August 17, 2012 and January 25, 2013, four sites enrolled healthy adults 18-70 years of age. Subjects were randomized to receive one of the following vaccination regimens: trivalent hemagglutinin (HA) DNA prime followed by trivalent inactivated influenza vaccine (IIV3) boost with a 3.5 month interval (DNA-IIV3), IIV3 prime followed by IIV3 boost with a 10 month interval (IIV3-IIV3), or concurrent DNA and IIV3 prime followed by IIV3 boost with a 10 month interval (DNA/IIV3-IIV3). Each regimen was additionally stratified by an IIV3 administration route of either intramuscular (IM) or intradermal (ID). DNA vaccines were administered by a needle-free jet injector (Biojector). Study objectives included evaluating the safety and tolerability of each regimen and measuring the antibody response by hemagglutination inhibition (HAI). RESULTS: Three hundred and sixteen subjects enrolled. Local reactogenicity was mild to moderate in severity, with higher frequencies recorded following DNA vaccine administered by Biojector compared to IIV3 by either route (p <0.02 for pain, swelling, and redness) and following IIV3 by ID route compared to IM route (p <0.001 for swelling and redness). Systemic reactogenicity was similar between regimens. Though no overall differences were observed between regimens, the highest titers post boost were observed in the DNA-IIV3 group by ID route and in the IIV3-IIV3 group by IM route. CONCLUSIONS: All vaccination regimens were found to be safe and tolerable. While there were no overall differences between regimens, the DNA-IIV3 group by ID route, and the IIV3-IIV3 group by IM route, showed higher responses compared to the other same-route regimens.


Assuntos
Hemaglutininas/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinas de DNA/administração & dosagem , Administração Intranasal , Adulto , Idoso , Feminino , Voluntários Saudáveis , Hemaglutininas/efeitos adversos , Hemaglutininas/imunologia , Humanos , Imunização Secundária , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Injeções Intradérmicas , Masculino , Pessoa de Meia-Idade , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
7.
Science ; 365(6452): 505-509, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31371616

RESUMO

Technologies that define the atomic-level structure of neutralization-sensitive epitopes on viral surface proteins are transforming vaccinology and guiding new vaccine development approaches. Previously, iterative rounds of protein engineering were performed to preserve the prefusion conformation of the respiratory syncytial virus (RSV) fusion (F) glycoprotein, resulting in a stabilized subunit vaccine candidate (DS-Cav1), which showed promising results in mice and macaques. Here, phase I human immunogenicity data reveal a more than 10-fold boost in neutralizing activity in serum from antibodies targeting prefusion-specific surfaces of RSV F. These findings represent a clinical proof of concept for structure-based vaccine design, suggest that development of a successful RSV vaccine will be feasible, and portend an era of precision vaccinology.


Assuntos
Imunogenicidade da Vacina , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/química , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Mapeamento de Epitopos , Humanos , Pessoa de Meia-Idade , Adulto Jovem
8.
PLoS One ; 13(11): e0206837, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30388160

RESUMO

BACKGROUND: Children are susceptible to severe influenza infections and facilitate community transmission. One potential strategy to improve vaccine immunogenicity in children against seasonal influenza involves a trivalent hemagglutinin DNA prime-trivalent inactivated influenza vaccine (IIV3) boost regimen. METHODS: Sites enrolled adolescents, followed by younger children, to receive DNA prime (1 mg or 4 mg) intramuscularly by needle-free jet injector (Biojector), followed by split virus 2012/13 seasonal IIV3 boost by needle and syringe approximately 18 weeks later. A comparator group received IIV3 prime and boost at similar intervals. Primary study objectives included evaluation of the safety and tolerability of the vaccine regimens, with secondary objectives of measuring antibody responses at four weeks post boost by hemagglutination inhibition (HAI) and neutralization assays. RESULTS: Seventy-five children ≥6 to ≤17 years old enrolled. Local reactogenicity was higher after DNA prime compared to IIV3 prime (p<0.001 for pain/tenderness, redness, or swelling), but symptoms were mild to moderate in severity. Systemic reactogenicity was similar between vaccines. Overall, antibody responses were similar among groups, although HAI antibodies revealed a trend towards higher responses following 4 mg DNA-IIV3 compared to IIV3-IIV3. The fold increase of HAI antibodies to A/California/07/2009 [A(H1N1)pdm09] was significantly greater following 4 mg DNA-IIV3 (10.12 fold, 5.60-18.27 95%CI) compared to IIV3-IIV3 (3.86 fold, 2.32-6.44 95%CI). Similar neutralizing titers were observed between regimens, with a trend towards increased response frequencies in 4 mg DNA-IIV3. However, significant differences in fold increase, reported as geometric mean fold ratios, were detected against the H1N1 viruses within the neutralization panel: A/New Caledonia/20/1999 (1.41 fold, 1.10-1.81 95%CI) and A/South Carolina/1/1918 (1.55 fold, 1.27-1.89 95%CI). CONCLUSIONS: In this first pediatric DNA vaccine study conducted in the U.S., the DNA prime-IIV3 boost regimen was safe and well tolerated. In children, the 4 mg DNA-IIV3 regimen resulted in antibody responses comparable to the IIV3-IIV3 regimen.


Assuntos
Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinas de DNA/administração & dosagem , Adolescente , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/imunologia , Criança , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Imunogenicidade da Vacina/efeitos dos fármacos , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Estações do Ano , Vacinas de Produtos Inativados/administração & dosagem
9.
NPJ Vaccines ; 2: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263871

RESUMO

A novel avian influenza subtype, A/H7N9, emerged in 2013 and represents a public health threat with pandemic potential. We have previously shown that DNA vaccine priming increases the magnitude and quality of antibody responses to H5N1 monovalent inactivated boost. We now report the safety and immunogenicity of a H7 DNA-H7N9 monovalent inactivated vaccine prime-boost regimen. In this Phase 1, open label, randomized clinical trial, we evaluated three H7N9 vaccination regimens in healthy adults, with a prime-boost interval of 16 weeks. Group 1 received H7 DNA vaccine prime and H7N9 monovalent inactivated vaccine boost. Group 2 received H7 DNA and H7N9 monovalent inactivated vaccine as a prime and H7N9 monovalent inactivated vaccine as a boost. Group 3 received H7N9 monovalent inactivated vaccine in a homologous prime-boost regimen. Overall, 30 individuals between 20 to 60 years old enrolled and 28 completed both vaccinations. All injections were well tolerated with no serious adverse events. 2 weeks post-boost, 50% of Group 1 and 33% of Group 2 achieved a HAI titer ≥1:40 compared with 11% of Group 3. Also, at least a fourfold increase in neutralizing antibody responses was seen in 90% of Group 1, 100% of Group 2, and 78% of Group 3 subjects. Peak neutralizing antibody geometric mean titers were significantly greater for Group 1 (GMT = 440.61, p < 0.05) and Group 2 (GMT = 331, p = 0.02) when compared with Group 3 (GMT = 86.11). A novel H7 DNA vaccine was safe, well-tolerated, and immunogenic when boosted with H7N9 monovalent inactivated vaccine, while priming for higher HAI and neutralizing antibody titers than H7N9 monovalent inactivated vaccine alone.

10.
PLoS One ; 10(5): e0125914, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950433

RESUMO

BACKGROUND: The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost. METHODS: Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65) or phosphate buffered saline (PBS) (n=66) administered intramuscularly with Biojector. All subjects received the 2012/13 seasonal inactivated influenza vaccine, trivalent (IIV3) 36 weeks after the priming injection. Vaccine safety and tolerability was the primary objective and measurement of antibody response by hemagglutination inhibition (HAI) was the secondary objective. RESULTS: The DNA vaccine prime-IIV3 boost regimen was safe and well tolerated. Significant differences in HAI responses between the DNA vaccine prime and the PBS prime groups were not detected in this study. CONCLUSION: While DNA priming significantly improved the response to a conventional monovalent H5 vaccine in a previous study, it was not effective in adults using seasonal influenza strains, possibly due to pre-existing immunity to the prime, unmatched prime and boost antigens, or the lengthy 36 week boost interval. Careful optimization of the DNA prime-IIV3 boost regimen as related to antigen matching, interval between vaccinations, and pre-existing immune responses to influenza is likely to be needed in further evaluations of this vaccine strategy. In particular, testing this concept in younger age groups with less prior exposure to seasonal influenza strains may be informative. TRIAL REGISTRATION: ClinicalTrials.gov NCT01498718.


Assuntos
Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinas de DNA/administração & dosagem , Vacinas de Produtos Inativados/administração & dosagem , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
11.
PLoS One ; 10(4): e0123969, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884189

RESUMO

BACKGROUND: A novel, swine-origin influenza A (H1N1) virus was detected worldwide in April 2009, and the World Health Organization (WHO) declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1) influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1) licensed monovalent inactivated vaccine (MIV). METHODS: 20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector) at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3-17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry. RESULTS: Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine. CONCLUSIONS: H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics. TRIAL REGISTRATION: Clinicaltrials.gov NCT00973895.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vacinas de DNA/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Adulto Jovem
13.
Ann Surg Oncol ; 15(12): 3538-49, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18923873

RESUMO

BACKGROUND: We hypothesized that lymph nodes draining sites of cutaneous vaccination could be identified by sentinel node biopsy techniques, and that measuring T-cell response with lymphocytes obtained from these lymph nodes would provide a more sensitive measure of immunogenicity than would the same measurement made with peripheral blood lymphocytes (PBL). METHODS: ELISpot analysis was used to determine the magnitude of vaccine-specific T-cell response in the sentinel immunized nodes (SIN), random lymph nodes, and peripheral blood lymphocytes (PBL) obtained from patients enrolled in clinical trials of experimental melanoma vaccines. RESULTS: The SIN biopsy was successful in 97% of cases and morbidity was very low. The T-cell response to vaccination was detected with greater sensitivity in the SIN (57%) than in PBL (39%), and evaluation of T-cell responses in the SIN and the PBL together yielded T-cell responses in 63% of patients. When the T-cell responses from a SIN and a random lymph node were compared in four patients, immune responses were detected to one of the vaccine peptides in three of these four patients. In all of those cases, responses were present in the SIN but absent from the random lymph node. CONCLUSION: Measurements of T-cell responsiveness to cutaneous immunization are more frequently positive in the SIN than they are in the PBL, however evaluation of both the SIN and PBL permit a more sensitive measure of T-cell immunogenicity than use of either single source.


Assuntos
Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Ensaios Clínicos como Assunto , Estudos de Viabilidade , Humanos , Melanoma/imunologia , Pessoa de Meia-Idade , Monitorização Imunológica , Proteínas de Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/imunologia , Vacinação
14.
Clin Cancer Res ; 13(21): 6386-95, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17975151

RESUMO

PURPOSE: Human melanoma cells express shared antigens recognized by CD8(+) T lymphocytes, the most common of which are melanocytic differentiation proteins and cancer-testis antigens. However, peptide vaccines for melanoma usually target only one or two MHC class I-associated peptide antigens. Because melanomas commonly evade immune recognition by selective antigen loss, optimization of melanoma vaccines may require development of more complex multipeptide vaccines. EXPERIMENTAL DESIGN: In a prospective randomized clinical trial, we have evaluated the safety and immunogenicity of a vaccine containing a mixture of 12 peptides from melanocytic differentiation proteins and cancer-testis antigens, designed for human leukocyte antigen types that represent 80% of the melanoma patient population. This was compared with a four-peptide vaccine with only melanocytic differentiation peptides. Immune responses were assessed in peripheral blood and in vaccine-draining lymph nodes. RESULTS: These data show that (a) the 12-peptide mixture is immunogenic in all treated patients; (b) immunogenicity of individual peptides is maintained despite competition with additional peptides for binding to MHC molecules; (c) a broader and more robust immune response is induced by vaccination with the more complex 12-peptide mixture; and (d) clinical outcome in this peptide vaccine trial correlates with immune responses measured in the peripheral blood lymphocytes. CONCLUSIONS: These data support continued investigation of complex multipeptide vaccines for melanoma.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Melanoma/patologia , Melanoma/terapia , Vacinas de Subunidades Antigênicas/uso terapêutico , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/química , Epitopos/química , Feminino , Antígenos HLA/química , Antígenos de Histocompatibilidade Classe I/química , Humanos , Sistema Imunitário , Linfócitos/metabolismo , Masculino , Oncologia/métodos , Pessoa de Meia-Idade , Peptídeos/química , Resultado do Tratamento
15.
J Biol Chem ; 281(27): 18763-73, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16648140

RESUMO

The major histocompatibility complex class I molecules consist of three subunits, the 45-kDa heavy chain, the 12-kDa beta(2)-microglobulin (beta(2)m), and an approximately 8-9-residue antigenic peptide. Without beta(2)m, the major histocompatibility complex class I molecules cannot assemble, thereby abolishing their transport to the cell membrane and the subsequent recognition by antigen-specific T cells. Here we report a case of defective antigen presentation caused by the expression of a beta(2)m with a Cys-to-Trp substitution at position 25 (beta(2)m(C25W)). This substitution causes misfolding and degradation of beta(2)m(C25W) but does not result in complete lack of human leukocyte antigen (HLA) class I molecule expression on the surface of melanoma VMM5B cells. Despite HLA class I expression, VMM5B cells are not recognized by HLA class I-restricted, melanoma antigen-specific cytotoxic T lymphocytes even following loading with exogenous peptides or transduction with melanoma antigen-expressing viruses. Lysis of VMM5B cells is restored only following reconstitution with exogenous or endogenous wild-type beta(2)m protein. Together, our results indicate impairment of antigenic peptide presentation because of a dysfunctional beta(2)m and provide a mechanism for the lack of close association between HLA class I expression and susceptibility of tumor cells to cytotoxic T lymphocytes-mediated lysis in malignant diseases.


Assuntos
Apresentação de Antígeno/genética , Genes MHC Classe I/imunologia , Antígenos HLA-A/genética , Melanoma/imunologia , Microglobulina beta-2/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Regulação para Baixo/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Antígenos HLA-A/imunologia , Humanos , Melanoma/genética , Modelos Moleculares , Dados de Sequência Molecular , Linfócitos T Citotóxicos/imunologia , Microglobulina beta-2/imunologia
16.
J Immunol ; 174(11): 6863-71, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15905528

RESUMO

Immune-mediated control of tumors may occur, in part, through lysis of malignant cells by CD8(+) T cells that recognize specific Ag-HLA class I complexes. However, tumor cell populations may escape T cell responses by immune editing, by preventing formation of those Ag-HLA complexes. It remains unclear whether the human immune system can respond to immune editing and recognize newly arising escape variants. We report an example of shifting immune responses to escape variants in a patient with sequential metastases of melanoma and long-term survival after surgery alone. Tumor cells in the first metastasis escaped immune recognition via selective loss of an HLA haplotype (HLA-A11, -B44, and -Cw17), but maintained expression of HLA-A2. In the second metastasis, immune escape from an immunodominant MART-1-specific T cell response was mediated by HLA class I down-regulation, resulting in a failure to present this epitope, but persistent presentation of a tyrosinase-derived epitope. Consequent to this modification in tumor Ag presentation, the dominant CTL response shifted principally toward a tyrosinase-targeted response, even though tyrosinase-specific CTL had been undetectable during the initial metastatic event. Thus, in response to immune editing of tumor cells, a patient's spontaneous T cell response adapted, gaining the ability to recognize and to lyse "edited" tumor targets. The observation of both immune editing and immune adaptation in a patient with long-term survival after surgery alone demonstrates an example of immune system reactivity to counteract the escape mechanism(s) developed by tumor cells, which may contribute to the clinical outcome of malignant disease.


Assuntos
Epitopos de Linfócito T/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Sobreviventes , Linfócitos T Citotóxicos/imunologia , Evasão Tumoral/imunologia , Apresentação de Antígeno , Antígenos de Neoplasias , Proteínas Reguladoras de Apoptose , Ligação Competitiva/imunologia , Linhagem Celular Tumoral , Membrana Celular/imunologia , Membrana Celular/metabolismo , Testes Imunológicos de Citotoxicidade , Regulação para Baixo/imunologia , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/biossíntese , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Epitopos Imunodominantes/metabolismo , Metástase Linfática/imunologia , Linfócitos do Interstício Tumoral/imunologia , Antígeno MART-1 , Melanoma/metabolismo , Melanoma/secundário , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/imunologia , Monofenol Mono-Oxigenase/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Recidiva Local de Neoplasia , Proteínas Nucleares/biossíntese , Transativadores/biossíntese , Fatores de Transcrição
17.
Cancer Immunol Immunother ; 54(11): 1095-105, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15889250

RESUMO

PURPOSE: To assess changes in serum cytokine levels in patients treated concomitantly with or without systemic low-dose IL-2. Vaccination targeted CTL responses to peptide antigens, and IL-2 was coadministered to expand activated CTL. Paradoxically, CTL responses were diminished in patients after 2 weeks of IL-2. We hypothesized that changes in the cytokine milieu may have contributed to this result. EXPERIMENTAL DESIGN: Serum samples were studied from 37 patients enrolled in two clinical trials of a melanoma peptide vaccine administered with or without low-dose IL-2 therapy. Twenty-two patients enrolled in the MEL36 trial received six weekly vaccinations with the four-peptide mixture and were randomized to receive subcutaneous IL-2 (3 x 10(6) IU/m2/day) daily for 6 weeks beginning either at week 1 (upfront group) or at week 4 (delayed group) of vaccine therapy. Fifteen patients on the MEL39 trial were treated with the same vaccine without concurrent IL-2 administration. RESULTS: Circulating levels of IL-5 peaked 1 week after starting IL-2, followed 2 weeks later by a marked eosinophilia, correlating in magnitude with peak IL-5 serum levels. Levels of IFNgamma, GM-CSF, IL-4, IL-10, and IL-12 had no observed relationship to IL-2 administration. At the time of the IL-5 serum peak, PBL responses to mitogen suggested a transient shift to Th2-dominance. CONCLUSIONS: Low-dose IL-2 appears to have induced a transient Th2-dominant secondary cytokine cascade at the time of vaccination, for which eosinophilia is a surrogate marker. For future vaccine therapies targeting cytotoxic T-cell responses, delaying IL-2 until after initiation of immune responses may be more effective.


Assuntos
Citocinas/sangue , Eosinofilia/etiologia , Interleucina-2/uso terapêutico , Melanoma/tratamento farmacológico , Células Th2/imunologia , Adulto , Idoso , Sequência de Aminoácidos , Feminino , Humanos , Interleucina-5/sangue , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia
18.
J Clin Oncol ; 22(22): 4474-85, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15542798

RESUMO

PURPOSE: A phase II trial was performed to test whether systemic low-dose interleukin-2 (IL-2) augments T-cell immune responses to a multipeptide melanoma vaccine. Forty patients with resected stage IIB-IV melanoma were randomly assigned to vaccination with four gp100- and tyrosinase-derived peptides restricted by human leukocyte antigen (HLA) -A1, HLA-A2, and HLA-A3, and a tetanus helper peptide plus IL-2 administered daily either beginning day 7 (group 1), or beginning day 28 (group 2). PATIENTS AND METHODS: T-cell responses were assessed by an interferon gamma ELIspot assay in peripheral blood lymphocytes (PBL) and in a lymph node draining a vaccination site (sentinel immunized node [SIN]). Patients were followed for disease-free and overall survival. RESULTS: T-cell responses to the melanoma peptides were observed in 37% of PBL and 38% of SINs in group 1, and in 53% of PBL and 83% of SINs in group 2. The magnitude of T-cell response was higher in group 2. The tyrosinase peptides DAEKSDICTDEY and YMDGTMSQV were more immunogenic than the gp100 peptides YLEPGPVTA and ALLAVGATK. T-cell responses were detected in the SINs more frequently, and with higher magnitude, than responses in the PBL. Disease-free survival estimates at 2 years were 39% (95% CI, 18% to 61%) for group 1, and 50% (95% CI, 28% to 72%) for group 2 (P = .32). CONCLUSION: The results of this study support the safety and immunogenicity of a vaccine composed of four peptides derived from gp100 and tyrosinase. The low-dose IL-2 regimen used for group 1 paradoxically diminishes the magnitude and frequency of cytotoxic T lymphocyte responses to these peptides.


Assuntos
Antineoplásicos/farmacologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Interleucina-2/farmacologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Adulto , Idoso , Antineoplásicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Intervalo Livre de Doença , Esquema de Medicação , Feminino , Antígenos HLA/imunologia , Humanos , Interleucina-2/administração & dosagem , Masculino , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Resultado do Tratamento , Tirosina/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Antígeno gp100 de Melanoma
19.
J Clin Oncol ; 21(21): 4016-26, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14581425

RESUMO

PURPOSE: To determine clinical and immunologic responses to a multipeptide melanoma vaccine regimen, a randomized phase II trial was performed. PATIENTS AND METHODS: Twenty-six patients with advanced melanoma were randomly assigned to vaccination with a mixture of four gp100 and tyrosinase peptides restricted by HLA-A1, HLA-A2, and HLA-A3, plus a tetanus helper peptide, either in an emulsion with granulocyte-macrophage colony-stimulating factor (GM-CSF) and Montanide ISA-51 adjuvant (Seppic Inc, Fairfield, NJ), or pulsed on monocyte-derived dendritic cells (DCs). Systemic low-dose interleukin-2 (Chiron, Emeryville, CA) was given to both groups. T-lymphocyte responses were assessed, by interferon gamma ELIspot assay (Chiron, Emeryville, CA), in peripheral-blood lymphocytes (PBLs) and in a lymph node draining a vaccine site (sentinel immunized node [SIN]). RESULTS: In patients vaccinated with GM-CSF in adjuvant, T-cell responses to melanoma peptides were observed in 42% of PBLs and 80% of SINs, but in patients vaccinated with DCs, they were observed in only 11% and 13%, respectively. The overall immune response was greater in the GM-CSF arm (P <.02). Vitiligo developed in two of 13 patients in the GM-CSF arm but in no patients in the DC arm. Helper T-cell responses to the tetanus peptide were detected in PBLs after vaccination and correlated with T-cell reactivity to the melanoma peptides. Objective clinical responses were observed in two patients in the GM-CSF arm and one patient in the DC arm. Stable disease was observed in two patients in the GM-CSF arm and one patient in the DC arm. CONCLUSION: The high frequency of cytotoxic T-lymphocyte responses and the occurrence of clinical tumor regressions support continued investigation of multipeptide vaccines administered with GM-CSF in adjuvant.


Assuntos
Vacinas Anticâncer/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Manitol/análogos & derivados , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Torácicas/tratamento farmacológico , Adulto , Idoso , Células Dendríticas , Esquema de Medicação , Feminino , Humanos , Interleucina-2/administração & dosagem , Linfonodos/imunologia , Masculino , Manitol/administração & dosagem , Melanoma/diagnóstico por imagem , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/secundário , Glicoproteínas de Membrana/administração & dosagem , Pessoa de Meia-Idade , Monofenol Mono-Oxigenase/administração & dosagem , Proteínas de Neoplasias/administração & dosagem , Ácidos Oleicos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Radiografia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Linfócitos T/imunologia , Neoplasias Torácicas/diagnóstico por imagem , Neoplasias Torácicas/imunologia , Neoplasias Torácicas/mortalidade , Neoplasias Torácicas/secundário , Resultado do Tratamento , Antígeno gp100 de Melanoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA