Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407025, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742866

RESUMO

The adsorbate-mediated strong metal-support interaction (A-SMSI) offers a reversible means of altering the selectivity of supported metal catalysts, thereby providing a powerful tool for facile modulation of catalytic performance. However, the fundamental understanding of A-SMSI remains inadequate and methods for tuning A-SMSI are still in their nascent stages, impeding its stabilization under reaction conditions. Here, we report that the initial concentration of oxygen vacancy in oxide supports plays a key role in tuning the A-SMSI between Ru nanoparticles and defected titania (TiO2-x). Based on this new understanding, we demonstrate the in-situ formation of A-SMSI under reaction conditions, obviating the typically required CO2-rich pretreatment. The as-formed A-SMSI layer exhibits remarkable stability at various temperatures, enabling excellent activity, selectivity and long-term stability in catalyzing the reverse water gas-shift reaction. This study deepens the understanding of the A-SMSI and the ability to stabilize A-SMSI under reaction conditions represents a key step for practical catalytic applications.

2.
Nat Commun ; 15(1): 3037, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589472

RESUMO

The directional transformation of carbon dioxide (CO2) with renewable hydrogen into specific carbon-heavy products (C6+) of high value presents a sustainable route for net-zero chemical manufacture. However, it is still challenging to simultaneously achieve high activity and selectivity due to the unbalanced CO2 hydrogenation and C-C coupling rates on complementary active sites in a bifunctional catalyst, thus causing unexpected secondary reaction. Here we report LaFeO3 perovskite-mediated directional tandem conversion of CO2 towards heavy aromatics with high CO2 conversion (> 60%), exceptional aromatics selectivity among hydrocarbons (> 85%), and no obvious deactivation for 1000 hours. This is enabled by disentangling the CO2 hydrogenation domain from the C-C coupling domain in the tandem system for Iron-based catalyst. Unlike other active Fe oxides showing wide hydrocarbon product distribution due to carbide formation, LaFeO3 by design is endowed with superior resistance to carburization, therefore inhibiting uncontrolled C-C coupling on oxide and isolating aromatics formation in the zeolite. In-situ spectroscopic evidence and theoretical calculations reveal an oxygenate-rich surface chemistry of LaFeO3, that easily escape from the oxide surface for further precise C-C coupling inside zeolites, thus steering CO2-HCOOH/H2CO-Aromatics reaction pathway to enable a high yield of aromatics.

3.
Adv Mater ; 36(1): e2303287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973198

RESUMO

To alleviate the greenhouse effect and address the related energy crisis, solar-driven reduction of carbon dioxide (CO2 ) to value-added products is considered as a sustainable strategy. However, the insufficient separation and rapid recombination of photogenerated charge carriers during photocatalysis greatly limit their reduction efficiency and practical application potential. Here, isolated Cobalt (Co) atoms are successfully decorated into oxygen-doped boron nitride (BN) via an in situ pyrolysis method, achieving greatly improved catalytic activity and selectivity to the carbon monoxide (CO) product. X-ray absorption fine spectroscopy demonstrates that the isolated Co atoms are stabilized by the O and N atoms with an unsaturated CoO2 N1 configuration. Further experimental investigation and theoretical simulations confirm that the decorated Co atoms not only work as the real active center during the CO2 reduction process, but also perform as the electron pump to promote the electron/hole separation and transfer, resulting in greatly accelerated reaction kinetics and improved activity. In addition, the CoO2 N1 coordination geometry is favorable to the conversion from *CO2 to *COOH, which shall be considered as a selectivity-determining step for the evolution of the CO products. The surface modulation strategy at the atomic level opens a new avenue for regulating the reaction kinetics for photocatalytic CO2 reduction.

4.
Small ; 20(3): e2304990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705122

RESUMO

The splitting of the C-C bonds of ethanol remains a key issue to be addressed, despite tremendous efforts made over the past several decades. This study highlights the enhancement mechanism of inexpensive NbN-modified Pd1 Sn3 -NbN/C towards the C-C bonds cleavage for alkaline ethanol oxidation reaction (EOR). The optimal Pd1 Sn3 -NbN/C delivers a catalytic activity up to 43.5 times higher than that of commercial Pd/C and high carbonate selectivity (20.5%) toward alkaline EOR. Most impressively, the Pd1 Sn3 -NbN/C presents good durability even after 25 200 s of chronoamperometric testing. The enhanced catalytic performance is mainly due to the interfacial interaction between PdSn and NbN, demonstrated by multiple structural characterization results. In addition, in situ ATR-SEIRAS (Attenuated total reflection-surface enhanced infrared absorption spectroscopy) results suggest that NbN facilitates the C-C bonds cleavage towards the alkaline EOR, followed by the enhanced OH adsorption to promote the subsequent oxidation of C1 intermediates after doping Sn. DFT (density functional theory) calculations indicate that the activation barriers of the C-H bond cleavage in CH3 CH2 OH, CH3 CHOH, CH3 CHO, CH3 CO, CH2 CO, and the C-C bond cleavage in CH3 CO, CH2 CO, CHCO are evidently reduced and the removal of adsorbed CH3 CO and CO becomes easier on the PdSn-NbN/C catalyst surface.

5.
JACS Au ; 3(10): 2736-2748, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885587

RESUMO

Synthetic fuels produced from CO2 show promise in combating climate change. The reverse water gas shift (RWGS) reaction is the key to opening the CO2 molecule, and CO serves as a versatile intermediate for creating various hydrocarbons. Mo-based catalysts are of great interest for RWGS reactions featured for their stability and strong metal-oxygen interactions. Our study identified Mo defects as the intrinsic origin of the high activity of cluster Mo2C for CO2-selective hydrogenation. Specifically, we found that defected Mo2C clusters supported on nitrogen-doped graphene exhibited exceptional catalytic performance, attaining a reaction rate of 6.3 gCO/gcat/h at 400 °C with over 99% CO selectivity and good stability. Such a catalyst outperformed other Mo-based catalysts and noble metal-based catalysts in terms of facile dissociation of CO2, highly selective hydrogenation, and nonbarrier liberation of CO. Our study revealed that as a potential descriptor, the atomic magnetism linearly correlates to the liberation capacity of CO, and Mo defects facilitated product desorption by reducing the magnetization of the adsorption site. On the other hand, the defects were effective in neutralizing the negative charges of surface hydrogen, which is crucial for selective hydrogenation. Finally, we have successfully demonstrated that the combination of a carbon support and the carbonization process synergistically serves as a feasible strategy for creating rich Mo defects, and biochar can be a low-cost alternative option for large-scale applications.

6.
Nat Commun ; 14(1): 5974, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749093

RESUMO

Enzymes achieve high catalytic activity with their elaborate arrangements of amino acid residues in confined optimized spaces. Nevertheless, when exposed to complicated environmental implementation scenarios, including high acidity, organic solvent and high ionic strength, enzymes exhibit low operational stability and poor activity. Here, we report a metal-organic frameworks (MOFs)-based artificial enzyme system via second coordination sphere engineering to achieve high hydrolytic activity under mild conditions. Experiments and theoretical calculations reveal that amide cleavage catalyzed by MOFs follows two distinct catalytic mechanisms, Lewis acid- and hydrogen bonding-mediated hydrolytic processes. The hydrogen bond formed in the secondary coordination sphere exhibits 11-fold higher hydrolytic activity than the Lewis acidic zinc ions. The MOFs exhibit satisfactory degradation performance of toxins and high stability under extreme working conditions, including complicated fermentation broth and high ethanol environments, and display broad substrate specificity. These findings hold great promise for designing artificial enzymes for environmental remediation.

7.
Nat Commun ; 13(1): 5567, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138013

RESUMO

Spontaneous monodispersion of reducible active species (e.g., Fe, Co) and their stabilization in reductive atmospheres remain a key challenge in catalytic syngas chemistry. In this study, we present a series of catalysts including spontaneously monodispersed and enriched Fe on ZnCr2O4. Deep investigation shows remarkable performance in the syngas-to-aromatic reaction only when monodispersed Fe coupled with a H-ZSM-5 zeolite. Monodispersed Fe increases the turnover frequency from 0.14 to 0.48 s-1 without sacrificing the record high selectivity of total aromatics (80-90%) at a single pass. The increased activity is ascribed to more efficient activation of CO and H2 at oxygen vacancy nearest to the isolated Fe site and the prevention of carbide formation. Atomic precise characterization and theoretical calculations shed light on the origin and implications of spontaneous Fe monodispersion, which provide guidance to the design of next-generation catalyst for upgrading small molecules to synthetic fuels and chemicals.

8.
ChemSusChem ; 15(7): e202102439, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132790

RESUMO

For a heterogeneous catalytic process, the performance of catalysts could be improved by modifying the active metal with a second element. Determining the enhanced mechanism of the second element is essential to the rational design of catalysts. In this work, Zn was introduced as a second element into Ni/ZrO2 for CO2 hydrogenation. In contrast to Ni/ZrO2 , the selectivity of NiZn/ZrO2 is observed to shift from CH4 to CO. A series of structural characterization results reveals that Zn is atomically dispersed in the NiO and ZrO2 phases as NiZnOx and ZnZrOx , respectively during CO2 hydrogenation, stabilizing a higher valence state of Ni (Niδ+ ) under a hydrogenation atmosphere over Ni-O-Zn site and thus promoting the generation of CO. These findings shed light on the O-mediated bimetallic effect of NiZn/ZrO2 and bring new insight into the rational design of more efficient heterogeneous catalysts.

9.
Adv Sci (Weinh) ; 9(9): e2104972, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35075801

RESUMO

Cu-based catalysts exhibit excellent performance in hydrogenation reactions. However, the poor stability of Cu catalysts under high temperatures has restricted their practical applications. The preparation of stable Cu catalysts supported by SiO2 with strong metal-support interaction (SMSI) has thus aroused great interest due to the high abundance, low toxicity, feasible processability, and low cost of SiO2 . The challenge in the construction of such SMSI remains to be the inertness of SiO2 . Herein, a simple and scalable method is developed to prepare 2D silica (2DSiO2 ) supported Cu catalysts with SMSI by carefully manipulating the topological exfoliation of CaSi2 with CuCl2 and thereafter calcination. The prepared Cu-2DSiO2 catalysts with the unique encapsulated Cu nanoparticles exhibit excellent activity and long-term stability in high-temperature CO2 hydrogenation reactions. This feasible and low-cost solution for stabilizing Cu catalysts might shed light on their realistic applications.

10.
Chem Commun (Camb) ; 58(8): 1219-1222, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34985057

RESUMO

A Zn2+-induced reactive separation method for the purification of ß-bromoethylbenzene from α-ß-bromoethylbenzene mixtures is discovered, where the selective decomposition of α-bromoethylbenzene follows a radical mechanism. Zn2+ facilitates the homolysis of the C-Br bond of halohydrocarbons with benzyl bromide, enabling the separation of the corresponding isomers with almost identical physical properties.

11.
Adv Mater ; 34(6): e2108727, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34816506

RESUMO

Colloidal metal nanocrystals with uniform sizes, shapes, compositions, and architectures are ideal building blocks for constructing heterogeneous catalysts with well-defined characteristics toward the investigation of accurate structure-property relationships and better understanding of catalytic mechanism. However, their applications in high-temperature heterogeneous catalysis are often restricted by the difficulty in maintaining the high metal dispersity and easy accessibility to active sites under harsh operating conditions. Here, a partial-oxide-coating strategy is proposed to stabilize metal nanocrystals against sintering and meanwhile enable an effective exposure of active sites. As a proof-of-concept, controlled partial silica coating of colloidally prepared Pd0.82 Ni0.18 nanocrystals with the size of 8 nm is demonstrated. This partially coated catalyst exhibits excellent activity, selectivity, and stability, outperforming its counterparts with fully coated and supported structures, in reverse water gas shift (RWGS) catalysis particularly at high operating temperatures. This study opens a new avenue for the exploration of colloidal metal nanocrystals in high-temperature heterogeneous catalysis.

12.
Nat Commun ; 11(1): 5767, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188189

RESUMO

Enhancing the intrinsic activity and space time yield of Cu based heterogeneous methanol synthesis catalysts through CO2 hydrogenation is one of the major topics in CO2 conversion into value-added liquid fuels and chemicals. Here we report inverse ZrO2/Cu catalysts with a tunable Zr/Cu ratio have been prepared via an oxalate co-precipitation method, showing excellent performance for CO2 hydrogenation to methanol. Under optimal condition, the catalyst composed by 10% of ZrO2 supported over 90% of Cu exhibits the highest mass-specific methanol formation rate of 524 gMeOHkgcat-1h-1 at 220 °C, 3.3 times higher than the activity of traditional Cu/ZrO2 catalysts (159 gMeOHkgcat-1h-1). In situ XRD-PDF, XAFS and AP-XPS structural studies reveal that the inverse ZrO2/Cu catalysts are composed of islands of partially reduced 1-2 nm amorphous ZrO2 supported over metallic Cu particles. The ZrO2 islands are highly active for the CO2 activation. Meanwhile, an intermediate of formate adsorbed on the Cu at 1350 cm-1 is discovered by the in situ DRIFTS. This formate intermediate exhibits fast hydrogenation conversion to methoxy. The activation of CO2 and hydrogenation of all the surface oxygenate intermediates are significantly accelerated over the inverse ZrO2/Cu configuration, accounting for the excellent methanol formation activity observed.

13.
Adv Mater ; 32(24): e2000014, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32390222

RESUMO

The efficiency of heterogeneous photocatalysis for converting solar to chemical energy is low on a per photon basis mainly because of the difficulty of capturing and utilizing light across the entire solar spectral wavelength range. This challenge is addressed herein with a plasmonic superstructure, fashioned as an array of nanoscale needles comprising cobalt nanocrystals assembled within a sheath of porous silica grown on a fluorine tin oxide substrate. This plasmonic superstructure can strongly absorb sunlight through different mechanisms including enhanced plasmonic excitation by the hybridization of Co nanoparticles in close proximity, as well as inter- and intra-band transitions. With nearly 100% sunlight harvesting ability, it drives the photothermal hydrogenation of carbon dioxide with a 20-fold rate increase from the silica-supported cobalt catalyst. The present work bridges the gap between strong light-absorbing plasmonic superstructures with photothermal CO2 catalysis toward the complete utilization of the solar energy.

14.
RSC Adv ; 10(3): 1634-1638, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494711

RESUMO

Concerns about the high-valued utilization of coal- and natural gas-based acetylene has provided particular impetus for exploration of acrylic acid (AA) production via one-step hydrocarboxylation reaction. Motivated by simple recovery, recycling and reuse of the catalyst, we report a high-performance NiO/AlOOH catalyst with AA space-time-yield of 412 gAA gcat. -1 h-1, obtainable by a simple incipient wetness impregnation method. Detailed kinetic and controlled experiments confirmed that nickel species on such a solid catalyst provide a heterogeneous-homogeneous-heterogeneous catalytic cycle where the chelates formed between CO and leached nickel act as the active species. The thorough recovery of leached nickel species improves the catalyst stability greatly. These preliminary findings indicate further prospects for new heterogeneous catalyst design in traditional homogeneous catalytic systems.

15.
Proc Natl Acad Sci U S A ; 115(33): 8278-8283, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061384

RESUMO

Ethylene (C2H4) is one of the most important raw materials for chemical industry. The tandem reactions of CO2-assisted dehydrogenation of ethane (C2H6) to ethylene creates an opportunity to effectively use the underutilized ethane from shale gas while mitigating anthropogenic CO2 emissions. Here we identify the most likely active sites over CeO2-supported NiFe catalysts by using combined in situ characterization with density-functional theory (DFT) calculations. The experimental and theoretical results reveal that the Ni-FeO x interfacial sites can selectively break the C-H bonds and preserve the C-C bond of C2H6 to produce ethylene, while the Ni-CeO x interfacial sites efficiently cleave all of the C-H and C-C bonds to produce synthesis gas. Controlled synthesis of the two distinct active sites enables rational enhancement of the ethylene selectivity for the CO2-assisted dehydrogenation of ethane.

16.
Chem Commun (Camb) ; 54(53): 7354-7357, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29911232

RESUMO

The selectivity of CO2 hydrogenation can be significantly tuned by controlling the valence state of nickel using lanthanum-iron-nickel perovskites. Nickel with higher valence states weakens the binding of CO and increases the activation barrier for further CO hydrogenation, leading to a higher CO selectivity than the metallic nickel.

17.
Nat Commun ; 9(1): 1398, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29636456

RESUMO

The inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO2 (CO2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO2 have been identified as promising catalysts for CO2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditions and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.

18.
J Am Chem Soc ; 138(38): 12440-50, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27571313

RESUMO

Rational optimization of catalytic performance has been one of the major challenges in catalysis. Here we report a bottom-up study on the ability of TiO2 and ZrO2 to optimize the CO2 conversion to methanol on Cu, using combined density functional theory (DFT) calculations, kinetic Monte Carlo (KMC) simulations, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements, and steady-state flow reactor tests. The theoretical results from DFT and KMC agree with in situ DRIFTS measurements, showing that both TiO2 and ZrO2 help to promote methanol synthesis on Cu via carboxyl intermediates and the reverse water-gas-shift (RWGS) pathway; the formate intermediates, on the other hand, likely act as a spectator eventually. The origin of the superior promoting effect of ZrO2 is associated with the fine-tuning capability of reduced Zr(3+) at the interface, being able to bind the key reaction intermediates, e.g. *CO2, *CO, *HCO, and *H2CO, moderately to facilitate methanol formation. This study demonstrates the importance of synergy between theory and experiments to elucidate the complex reaction mechanisms of CO2 hydrogenation for the realization of a better catalyst by design.

19.
Angew Chem Int Ed Engl ; 55(28): 7968-73, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27159088

RESUMO

By simply changing the oxide support, the selectivity of a metal-oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2 , ZrO2 , and TiO2 ), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo-oxide interface, leading to a different product selectivity. These results reveal mechanistic insights into how the catalytic performance of metal-oxide catalysts can be fine-tuned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA