Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(17): 4440-4443, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656523

RESUMO

Chaotic optical communication is of great significance for secure data transmission. Despite rapid development over the decades, high-speed (>100 Gbps) and long-distance (>100 km) chaotic optical communication in a single fiber is still full of challenges. Here, we propose and experimentally demonstrate high-speed and long-distance chaos-based secure optical communications using mutual injection of semiconductor lasers and space-division multiplexing (SDM) techniques. The encrypted signals are transmitted through all seven core channels of the multi-core fiber (MCF), which effectively expands the aggregate transmission capacity of a single fiber. A pair of source and synchronization devices based on mutual injection of semiconductor lasers are employed to effectively encrypt and decrypt signals. Chaos-based secure optical communications with 70-Gbps on-off keying (OOK) and 140-Gbps quadrature phase-shift keying (QPSK) signals over a 130-km MCF are successfully demonstrated in the experiment with favorable performance. The demonstration may pave the way for future ultrahigh capacity and ultra-long distance chaotic optical communications by fully exploiting multi-dimensional resources of light waves, including the spatial dimension.

2.
Opt Express ; 31(5): 8586-8594, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859970

RESUMO

Weakly-coupled mode division multiplexing (MDM) techniques supporting intensity modulation and direct detection (IM/DD) transmission is a promising candidate to enhance the capacity of short-reach applications such as optical interconnections, in which low-modal-crosstalk mode multiplexers/demultiplexers (MMUX/MDEMUX) are highly desired. In this paper, we firstly propose an all-fiber low-modal-crosstalk orthogonal combine reception scheme for degenerate linearly-polarized (LP) modes, in which signals in both degenerate modes are firstly demultiplexed into the LP01 mode of single-mode fibers, and then are multiplexed into mutually orthogonal LP01 and LP11 modes of a two-mode fiber for simultaneous detection. Then a pair of 4-LP-mode MMUX/MDEMUX consisting of cascaded mode-selective couplers and orthogonal combiners are fabricated with side-polishing processing, which achieve low back-to-back modal crosstalk of lower than -18.51 dB and insertion loss of lower than 3.81 dB for all the 4 modes. Finally, a stable real-time 4 modes × 4λ × 10 Gb/s MDM-wavelength division multiplexing (WDM) transmission over 20-km few-mode fiber is experimentally demonstrated. The proposed scheme is scalable to support more modes and can pave the way to practical implementation of IM/DD MDM transmission applications.

3.
Opt Express ; 30(11): 19042-19054, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221691

RESUMO

We present a rapid and precise method to design the multiple step-index bridge fiber for ultra-low insertion loss few-mode multi-core fiber Fan-in/Fan-out device. The genetic algorithm is applied to optimize the structural parameters to support multi-mode operation. Based on the proposed intelligent iteration platform, core-based multiplex/demultiplex optimization can be achieved with less than 1.0 dB insertion loss for the first 6 LP modes in space division multiplexing system consisting of few-mode multi-core fibers. Besides, we have successfully drew the designed bridge fiber and fabricated the corresponding Fan-in/Fan-out device. When connecting it with the single-core 6-mode fiber and 7-core 6-mode fiber, the average insertion losses of mode LP01, LP11a, LP11b, LP21a, LP21b, and LP02 are 0.88 dB, 1.11 dB, 1.07 dB, 1.42 dB, 1.33 dB, and 1.04 dB, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA