Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
iScience ; 27(5): 109661, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38650980

RESUMO

The role of neutrophils in tumor initiation stage is rarely reported because of the lack of suitable models. We found that neutrophils recruited in early tumor nodules induced by subcutaneous inoculation of B16 melanoma cells were able to attack tumor cells by trogocytosis. The anti-tumor immunotherapy like peritoneal injection with TLR9 agonist CpG oligodeoxynucleotide combined with transforming growth factor ß2 inhibitor TIO3 could increase the trogocytic neutrophils in the nodules, as well as CD8+ T cells, natural killer (NK) cells, and their interferon-γ production. Local use of Cxcl2 small interfering RNA significantly reduced the number of neutrophils and trogocytic neutrophils in tumor nodules, as well as CD8+ T and NK cells, and also enlarged the nodules. These results suggest that neutrophils recruited early to the inoculation site of tumor cells are conducive to the establishment of anti-tumor immune microenvironment. Our findings provide a useful model system for studying the effect of neutrophils on tumors and anti-tumor immunotherapy.

2.
Mol Neurobiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573412

RESUMO

Diabetes-associated cognitive dysfunction (DACD) has ascended to become the second leading cause of mortality among diabetic patients. Phosphoserine phosphatase (PSPH), a pivotal rate-limiting enzyme in L-serine biosynthesis, has been documented to instigate the insulin signaling pathway through dephosphorylation. Concomitantly, CD38, acting as a mediator in mitochondrial transfer, is activated by the insulin pathway. Given that we have demonstrated the beneficial effects of exogenous mitochondrial supplementation on DACD, we further hypothesized whether astrocytic PSPH could contribute to improving DACD by promoting astrocytic mitochondrial transfer into neurons. In the Morris Water Maze (MWM) test, our results demonstrated that overexpression of PSPH in astrocytes alleviated DACD in db/db mice. Astrocyte specific-stimulated by PSPH lentivirus/ adenovirus promoted the spine density both in vivo and in vitro. Mechanistically, astrocytic PSPH amplified the expression of CD38 via initiation of the insulin signaling pathway, thereby promoting astrocytic mitochondria transfer into neurons. In summation, this comprehensive study delineated the pivotal role of astrocytic PSPH in alleviating DACD and expounded upon its intricate cellular mechanism involving mitochondrial transfer. These findings propose that the specific up-regulation of astrocytic PSPH holds promise as a discerning therapeutic modality for DACD.

3.
Mol Neurobiol ; 61(2): 1187-1201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697219

RESUMO

Diabetes-associated cognitive dysfunction (DACD) is considered a significant complication of diabetes and manifests as cognitive impairment. Astrocytes are vital to the brain energy metabolism and cerebral antioxidant status. Ferroptosis has been implicated in cognitive impairment, but it is unclear whether the ferroptosis of astrocytes is involved in the progression of DACD. PPARA/PPARα (peroxisome proliferator-activated receptor alpha) is a transcription factor that regulates glucose and lipid metabolism in the brain. In this study, we demonstrated that high glucose promoted ferroptosis of astrocytes by disrupting iron metabolism and suppressing the xCT/GPX4-regulated pathway in diabetic mice and astrocytes cultured in high glucose. Administration of gemfibrozil, a known PPARα agonist, inhibited ferroptosis and improved memory impairment in db/db mice. Gemfibrozil also prevented the accumulation of lipid peroxidation products and lethal reactive oxygen species induced by iron deposition in astrocytes and substantially reduced neuronal and synaptic loss. Our findings demonstrated that ferroptosis of astrocytes is a novel mechanism in the development of DACD. Additionally, our study revealed the therapeutic effect of gemfibrozil in preventing and treating DACD by inhibiting ferroptosis.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Animais , Camundongos , Genfibrozila/farmacologia , Genfibrozila/uso terapêutico , PPAR alfa , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Astrócitos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Glucose , Ferro
4.
Cell Commun Signal ; 21(1): 357, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102662

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) induced diabetes-associated cognitive dysfunction (DACD) that seriously affects the self-management of T2DM patients, is currently one of the most severe T2DM-associated complications, but the mechanistic basis remains unclear. Mitochondria are highly dynamic organelles, whose function refers to a broad spectrum of features such as mitochondrial dynamics, mitophagy and so on. Mitochondrial abnormalities have emerged as key determinants for cognitive function, the relationship between DACD and mitochondria is not well understood. METHODS: Here, we explored the underlying mechanism of mitochondrial dysfunction of T2DM mice and HT22 cells treated with high glucose/palmitic acid (HG/Pal) focusing on the mitochondrial fission-mitophagy axis with drug injection, western blotting, Immunofluorescence, and electron microscopy. We further explored the potential role of caveolin-1 (cav-1) in T2DM induced mitochondrial dysfunction and synaptic alteration through viral transduction. RESULTS: As previously reported, T2DM condition significantly prompted hippocampal mitochondrial fission, whereas mitophagy was blocked rather than increasing, which was accompanied by dysfunctional mitochondria and impaired neuronal function. By contrast, Mdivi-1 (mitochondrial division inhibitor) and urolithin A (mitophagy activator) ameliorated mitochondrial and neuronal function and thereafter lead to cognitive improvement by inhibiting excessive mitochondrial fission and giving rise to mitophagy, respectively. We have previously shown that cav-1 can significantly improve DACD by inhibiting ferroptosis. Here, we further demonstrated that cav-1 could not only inhibit mitochondrial fission via the interaction with GSK3ß to modulate Drp1 pathway, but also rescue mitophagy through interacting with AMPK to activate PINK1/Parkin and ULK1-dependent signlings. CONCLUSIONS: Overall, our data for the first time point to a mitochondrial fission-mitophagy axis as a driver of neuronal dysfunction in a phenotype that was exaggerated by T2DM, and the protective role of cav-1 in DACD. Graphic Summary Illustration. In T2DM, excessive mitochondrial fission and impaired mitophagy conspire to an altered mitochondrial morphology and mitochondrial dysfunction, with a consequent neuronal damage, overall suggesting an unbalanced mitochondrial fission-mitophagy axis. Upon cav-1 overexpression, GSK3ß and AMPK are phosphorylated respectively to activate Drp1 and mitophagy-related pathways (PINK1 and ULKI), ultimately inhibits mitochondrial fission and enhances mitophagy. In the meantime, the mitochondrial morphology and neuronal function are rescued, indicating the protective role of cav-1 on mitochondrial fission-mitophagy axis. Video Abstract.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Doenças Mitocondriais , Humanos , Camundongos , Animais , Mitofagia , Dinâmica Mitocondrial/genética , Diabetes Mellitus Tipo 2/complicações , Caveolina 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/metabolismo , Disfunção Cognitiva/etiologia , Ubiquitina-Proteína Ligases/metabolismo
5.
Exp Mol Med ; 55(11): 2417-2432, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37907746

RESUMO

Dementia, as an advanced diabetes-associated cognitive dysfunction (DACD), has become the second leading cause of death among diabetes patients. Given that little guidance is currently available to address the DACD process, it is imperative to understand the underlying mechanisms and screen out specific therapeutic targets. The excessive endogenous fructose produced under high glucose conditions can lead to metabolic syndrome and peripheral organ damage. Although generated by the brain, the role of endogenous fructose in the exacerbation of cognitive dysfunction is still unclear. Here, we performed a comprehensive study on leptin receptor-deficient T2DM mice and their littermate m/m mice and revealed that 24-week-old db/db mice had cognitive dysfunction and excessive endogenous fructose metabolism in the hippocampus by multiomics analysis and further experimental validation. We found that the rate-limiting enzyme of fructose metabolism, ketohexokinase, is primarily localized in microglia. It is upregulated in the hippocampus of db/db mice, which enhances mitochondrial damage and reactive oxygen species production by promoting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression and mitochondrial translocation. Inhibiting fructose metabolism via ketohexokinase depletion reduces microglial activation, leading to the restoration of mitochondrial homeostasis, recovery of structural synaptic plasticity, improvement of CA1 pyramidal neuron electrophysiology and alleviation of cognitive dysfunction. Our findings demonstrated that enhanced endogenous fructose metabolism in microglia plays a dominant role in diabetes-associated cognitive dysfunction and could become a potential target for DACD.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus , Humanos , Camundongos , Animais , Microglia/metabolismo , Frutose/metabolismo , Disfunção Cognitiva/etiologia , Encéfalo/metabolismo , Frutoquinases/genética , Frutoquinases/metabolismo
6.
Eur J Med Res ; 28(1): 340, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700362

RESUMO

BACKGROUND: The exact mechanisms of type 2 diabetes mellitus (T2DM) remain largely unknown. We intended to authenticate critical genes linked to T2DM progression by tandem single-cell sequencing and general transcriptome sequencing data. METHODS: T2DM single-cell RNA-sequencing data were submitted by the Gene Expression Omnibus (GEO) database and ArrayExpress (EBI), from which gene expression matrices were retrieved. The common cell clusters and representative marker genes were ascertained by principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), CellMarker, and FindMarkers in two datasets (GSE86469 and GSE81608). T2DM-related differentially expressed marker genes were defined by intersection analysis of marker genes and GSE86468-differentially expressed genes. Receiver operating characteristic (ROC) curves were utilized to assign representative marker genes with diagnostic values by GSE86468, GSE29226 and external validation GSE29221, and their prospective target compounds were forecasted by PubChem. Besides, the R package clusterProfiler-based functional annotation was designed to unveil the intrinsic mechanisms of the target genes. At last, western blot was used to validate the alternation of CDKN1C and DLK1 expression in primary pancreatic islet cells cultured with or without 30mM glucose. RESULTS: Three common cell clusters were authenticated in two independent T2DM single-cell sequencing data, covering neurons, epithelial cells, and smooth muscle cells. Functional ensemble analysis disclosed an intimate association of these cell clusters with peptide/insulin secretion and pancreatic development. Pseudo-temporal trajectory analysis indicated that almost all epithelial and smooth muscle cells were of neuron origin. We characterized CDKN1C and DLK1, which were notably upregulated in T2DM samples, with satisfactory availability in recognizing three representative marker genes in non-diabetic and T2DM samples, and they were also robustly interlinked with the clinical characteristics of patients. Western blot also demonstrated that, compared with control group, the expression of CDKN1C and DLK1 were increased in primary pancreatic islet cells cultured with 30 mM glucose for 48 h. Additionally, PubChem projected 11 and 21 potential compounds for CDKN1C and DLK1, respectively. CONCLUSION: It is desirable that the emergence of the 2 critical genes indicated (CDKN1C and DLK1) could be catalysts for the investigation of the mechanisms of T2DM progression and the exploitation of innovative therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Western Blotting , Glucose , Insulina , RNA
7.
EBioMedicine ; 93: 104653, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37329577

RESUMO

BACKGROUND: Dementia is a serious complication in patients with diabetes-associated cognitive dysfunction (DACD). In this study, we aim to explore the protective effect of exercise on DACD in diabetic mice, and the role of NDRG2 as a potential guarder for reversing the pathological structure of neuronal synapses. METHODS: Seven weeks of standardized exercise at moderate intensity was carried out using an animal treadmill in the vehicle + Run and STZ + Run groups. Based on quantitative transcriptome and tandem mass tag (TMT) proteome sequencing, weighted gene co-expression analysis (WGCNA) and gene set enrichment analysis (GSEA) were used to investigate the activation of complement cascades to injury neuronal synaptic plasticity. Golgi staining, Western blotting, immunofluorescence staining, and electrophysiology were used to verify the reliability of sequencing data. The role of NDRG2 was assessed by overexpressing or inhibiting the NDRG2 gene in vivo. Moreover, we estimated the cognitive function in diabetic or normal patients using DSST scores. FINDINGS: Exercise reversed the injury of neuronal synaptic plasticity and the downregulation of astrocytic NDRG2 in diabetic mice, which succeeded in attenuating DACD. The deficiency of NDRG2 aggravated the activation of complement C3 by accelerating the phosphorylation of NF-κB, ultimately leading to synaptic injury and cognitive dysfunction. Conversely, the overexpression of NDRG2 promoted astrocytic remodeling by inhibiting complement C3, thus attenuating synaptic injury and cognitive dysfunction. Meanwhile, C3aR blockade rescued dendritic spines loss and cognitive deficits in diabetic mice. Moreover, the average DSST score of diabetic patients was significantly lower than that of non-diabetic peers. Levels of complement C3 in human serum were elevated in diabetic patients compared to those in non-diabetic patients. INTERPRETATION: Our findings illustrate the effectiveness and integrative mechanism of NDRG2-induced improvement of cognition from a multi-omics perspective. Additionally, they confirm that the expression of NDRG2 is closely related to cognitive function in diabetic mice and the activation of complement cascades accelerated impairment of neuronal synaptic plasticity. NDRG2 acts as a regulator of astrocytic-neuronal interaction via NF-κB/C3/C3aR signaling to restore synaptic function in diabetic mice. FUNDING: This study was supported by the National Natural Science Foundation of China (No. 81974540, 81801899, 81971290), the Key Research and Development Program of Shaanxi (Program No. 2022ZDLSF02-09) and Fundamental Research Funds for the Central Universities (Grant No. xzy022019020).


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Humanos , Camundongos , Animais , NF-kappa B/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Complemento C3 , Reprodutibilidade dos Testes , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , Proteínas Supressoras de Tumor
8.
Autophagy ; 19(10): 2639-2656, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37204119

RESUMO

Neuroinflammation caused by microglial activation and consequent neurological impairment are prominent features of diabetes-associated cognitive impairment (DACI). Microglial lipophagy, a significant fraction of autophagy contributing to lipid homeostasis and inflammation, had mostly been ignored in DACI. Microglial lipid droplets (LDs) accumulation is a characteristic of aging, however, little is known about the pathological role of microglial lipophagy and LDs in DACI. Therefore, we hypothesized that microglial lipophagy could be an Achilles's heel exploitable to develop effective strategies for DACI therapy. Here, starting with characterization of microglial accumulation of LDs in leptin receptor-deficient (db/db) mice and in high-fat diet and STZ (HFD/STZ) induced T2DM mice, as well as in high-glucose (HG)-treated mice BV2, human HMC3 and primary mice microglia, we revealed that HG-dampened lipophagy was responsible for LDs accumulation in microglia. Mechanistically, accumulated LDs colocalized with the microglial specific inflammatory amplifier TREM1 (triggering receptor expressed on myeloid cells 1), resulting in the buildup of microglial TREM1, which in turn aggravates HG-induced lipophagy damage and subsequently promoted HG-induced neuroinflammatory cascades via NLRP3 (NLR family pyrin domain containing 3) inflammasome. Moreover, pharmacological blockade of TREM1 with LP17 in db/db mice and HFD/STZ mice inhibited accumulation of LDs and TREM1, reduced hippocampal neuronal inflammatory damage, and consequently improved cognitive functions. Taken together, these findings uncover a previously unappreciated mechanism of impaired lipophagy-induced TREM1 accumulation in microglia and neuroinflammation in DACI, suggesting its translational potential as an attractive therapeutic target for delaying diabetes-associated cognitive decline.Abbreviations: ACTB: beta actin; AIF1/IBA1: allograft inflammatory factor 1; ALB: albumin; ARG1: arginase 1; ATG3: autophagy related 3; Baf: bafilomycin A1; BECN1: beclin 1, autophagy related; BW: body weight; CNS: central nervous system; Co-IP: co-immunoprecipitation; DACI: diabetes-associated cognitive impairment; DAPI: 4',6-diamidino-2-phenylindole; DGs: dentate gyrus; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified Eagle's medium; DSST: digit symbol substitution test; EDTA: ethylenedinitrilotetraacetic acid; ELISA: enzyme linked immunosorbent assay; GFAP: glial fibrillary acidic protein; HFD: high-fat diet; HG: high glucose; IFNG/IFN-γ: interferon gamma; IL1B/IL-1ß: interleukin 1 beta; IL4: interleukin 4; IL6: interleukin 6; IL10: interleukin 10; LDs: lipid droplets; LPS: lipopolysaccharide; MAP2: microtubule associated protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MWM: morris water maze; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3: NLR family pyrin domain containing 3; NOS2/iNOS: nitric oxide synthase 2, inducible; NOR: novel object recognition; OA: oleic acid; PA: palmitic acid; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PLIN2: perilipin 2; PLIN3: perilipin 3; PS: penicillin-streptomycin solution; RAPA: rapamycin; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RELA/p65: RELA proto-oncogene, NF-kB subunit; ROS: reactive oxygen species; RT: room temperature; RT-qPCR: Reverse transcription quantitative real-time polymerase chain reaction; STZ: streptozotocin; SQSTM1/p62: sequestosome 1; SYK: spleen asociated tyrosine kinase; SYP: synaptophysin; T2DM: type 2 diabetes mellitus; TNF/TNF-α: tumor necrosis factor; TREM1: triggering receptor expressed on myeloid cells 1; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling.


Assuntos
Autofagia , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Animais , Humanos , Camundongos , Autofagia/fisiologia , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Gotículas Lipídicas/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
9.
Neuropharmacology ; 235: 109571, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146940

RESUMO

Reactive astrocytes play a potential regulatory role in sleep deprivation (SD). Paired immunoglobulin-like receptor B (PirB) is expressed in reactive astrocytes, suggesting that PirB may participate in regulating the inflammatory response of astrocytes. We used lentiviral and adeno-associated viral approaches to interfere with the expression of PirB in vivo and in vitro. C57BL/6 mice were sleep deprived for 7 days and neurological function was measured via behavioral tests. We found that overexpressed PirB in SD mice could decrease the number of neurotoxic reactive astrocytes, alleviate cognitive deficits, and promote reactive astrocytes tended to be neuroprotective state. IL-1α, TNFα, and C1q were used to induce neurotoxic reactive astrocytes in vitro. Overexpression of PirB relieved the toxicity of neurotoxic astrocytes. Silencing PirB expression had the opposite effect and exacerbated the transition of reactive astrocytes to a neurotoxic state in vitro. Moreover, PirB-impaired astrocytes demonstrated STAT3 hyperphosphorylation which could be reversed by stattic (p-STAT3 inhibitor). Furthermore, Golgi-Cox staining confirmed that dendrite morphology defects and synapse-related protein were significantly increased in PirB-overexpressed SD mice. Our data demonstrated that SD induced neurotoxic reactive astrocytes and contributed to neuroinflammation and cognitive deficits. PirB performs a negative regulatory role in neurotoxic reactive astrocytes via the STAT3 signaling pathway in SD.


Assuntos
Astrócitos , Receptores Imunológicos , Camundongos , Animais , Receptores Imunológicos/metabolismo , Astrócitos/metabolismo , Privação do Sono/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais
10.
Front Pharmacol ; 13: 1008080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188574

RESUMO

Background: Necrotizing enterocolitis (NEC) is a potentially fatal inflammatory gastrointestinal disease in preterm infants with unknown pathogenesis. Mucosal-associated invariant T (MAIT) cells primarily accumulate at sites where exposure to microbes is ubiquitous and regulate immunological responses. As the implications of these cells in NEC development in premature infants remain unknown, we investigated the role and characteristics of MAIT cells in NEC pathogenesis. Methods: The percentage of different MAIT cell subsets in peripheral blood samples of 30 preterm infants with NEC and 22 control subjects was estimated using flow cytometry. The frequency of MAIT cells in the intestinal tissues of five NEC patients and five control subjects was also examined. The level of serum cytokines was estimated using cytometric bead array. Potential associations between the different measurements were analyzed using the Spearman's correlation test. Results: Compared with controls, the NEC patients were found to have significantly reduced percentages of circulating CD161+ CD3+ CD8αα+ T cells and CD161+ CD3+ TCRγδ-TCRVa7.2+ MAIT cells. In the intestinal tissues, the percentage of MAIT cells was significantly higher in samples from the NEC patients than the controls. Furthermore, the percentage of circulating MAIT cells in the peripheral blood samples was inversely correlated with that in the intestinal tissues of the NEC patients. The percentage of CD8αα+ MAIT cells was found to be significantly reduced in both peripheral blood and intestinal tissues of NEC patients. Following treatment, the frequency of circulating MAIT cells significantly increased in NEC patients and reached a level similar to that in the control subjects. However, there was no difference in the percentage of circulating CD8αα+ MAIT cells before and after treatment in the NEC patients. Conclusion: Our results suggested that during the development of NEC MAIT cells accumulate in the inflammatory intestinal tissues, while the percentage of CD8aa+ MAIT cells is significantly decreased, which may lead to the dysfunction of MAIT cells in gut immunity.

11.
Lancet Reg Health West Pac ; 14: 100212, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34528000

RESUMO

BACKGROUND: To investigate the current situation of neonatal care resources (NCR), newborn mortality rates (NMR), regional differences and existing challenges in China. METHODS: By using a self-designed questionnaire form and the cross-sectional method, we conducted a survey of all hospitals equipped with neonatal facilities in China from March 2019 to March 2020 with respect to the level and nature of these hospitals, the number of newborn beds and NICU beds, the number of neonatal pediatricians, and the development of therapeutic techniques. The data about the newborn births and deaths were retrieved from the annual statistics of the health commissions of the related provinces, autonomous regions and municipalities. FINDING: Included in this nationwide survey were 3,020 hospitals from all 22 provinces, 5 autonomous regions and 4 municipalities directly under the Central Government of Mainland China, with a 100% response rate. They included 1,183 (39.2%) level-3 (L3) hospitals, 1629 (53.9%) L-2 hospitals and 208 (6.9%) L-1 hospitals. Geographically, 848 (31.4%) hospitals were distributed in Central China, 983 (32.5%) hospitals in East China, and 1,089 (36.1%) in West China. The 3,020 included hospitals were altogether equipped with 75,679 newborn beds, with a median of 20 (2-350) beds, of which 2,286 hospitals (75.7%) were equipped with neonatal intensive care units (NICU), totaling 28,076 NICU beds with a median of 5 (1-160) beds. There were altogether 27,698 neonatal pediatricians in these hospitals, with an overall doctor-bed ratio of 0.366. There were 48.18 newborn beds and 17.87 NICU beds per 10,000 new births in China. In East, Central and West China, the number of neonatal beds, NICU beds, neonatal pediatricians, and attending pediatricians or pediatricians with higher professional titles per 10,000 newborns was 42.57, 48.64 and 55.67; 17.07, 18.66 and 18.17; 16.26, 16.51 and 20.81; and 10.69, 10.81 and 11.29, respectively. However, when the population and area are taken into consideration and according to the health resources density index (HRDI), the number of newborn beds, NICU beds and neonatal pediatricians in West China was significantly lower than that in Central and East China. In addition, only 10.64% of the neonatal pediatricians in West China possessed the Master or higher degrees, vs. 31.7% in East China and 20.14% in Central China. On the contrary, the number of neonatal pediatricians with a lower than Bachelor degree in West China was significantly higher than that in Central and East China (13.28% vs. 7.36% and 4.28%). Technically, the application rate of continuous positive airway pressure (CPAP) and conventional mechanical ventilation (CMV) in L-1 hospitals of West China was lower than that in Central and East China. According to the statistics in 2018, the newborn mortality rate (NMR) in West China was significantly higher than that in Central and East China. INTERPRETATION: China has already possessed relatively good resources for neonatal care and treatment, which is the primary reason for the rapid decrease in the NMR in China. However, there are still substantial regional differences. The density of health resources, the level of technical development and educational background of neonatal pediatricians in West China still lag behind those in other regions of China and need to be further improved and upgraded. FUNDING: This research work was funded by National Natural Science Foundation of China (81671504) and United Nations International Children's Emergency Fund (CHINA-UNICEF501MCH).

12.
Shock ; 56(1): 108-118, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060455

RESUMO

BACKGROUND: Mitochondrial transplantation is a promising strategy for the treatment of several diseases. However, the effects of mitochondrial transplantation on the outcome of polymicrobial sepsis remain unclear. METHODS: The distribution of transplanted mitochondria in cecal ligation and puncture (CLP)-operated mice was detected at 2 and 12 h after intravenous injection in the tail (n = 3). Then, the effects of mitochondrial transplantation on bacterial clearance (n = 7), systemic inflammation (n = 10), organ injury (n = 8), and mortality (n = 19) during CLP-induced sepsis were explored. Microarray analysis (n = 3) was used to testify the molecular changes associated with decreased systemic inflammation and multiorgan dysfunction in sepsis. RESULTS: The extraneous mitochondria were distributed in the lung, liver, kidney, and brain of CLP-operated mice at 2 and 12 h after intravenous injection in the tail. Mitochondrial transplantation increased the survival rate of septic mice, which was associated with decreased bacterial burden, systemic inflammation, and organ injury. Spleen samples were utilized for microarray analysis. Pathway analysis revealed that in polymicrobial sepsis, gene expression was significantly changed in processes related to inflammatory response, complement and coagulation cascades, and rejection reaction. CONCLUSIONS: These data displayed that mitochondrial replenishment reduces systemic inflammation and organ injury, enhances bacterial clearance, and improves the survival rate in sepsis. Thus, extraneous mitochondrial replenishment may be an effective adjunctive treatment to reduce sepsis-related mortality.


Assuntos
Inflamação/terapia , Mitocôndrias Musculares/transplante , Sepse/mortalidade , Sepse/terapia , Animais , Bactérias , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/microbiologia , Taxa de Sobrevida , Resultado do Tratamento
13.
Rejuvenation Res ; 24(2): 104-119, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32746712

RESUMO

Electroacupuncture (EA) pretreatment induces cerebral ischemic tolerance; however, the mechanism remains poorly understood. This study aimed to determine the participation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis in the neuroprotection of EA and whether cannabinoid receptor 1 (CB1R) is involved in this mechanism. At 2 hours after EA pretreatment, adult male C57BL/6j mice were subjected to 60-minute right middle cerebral artery occlusion (MCAO). Mitochondrial function, the level of mitochondrial biogenesis-related proteins (nuclear transcription factor 1, NRF1; mitochondrial transcription factor A, TFAM), and mitochondrial DNA (mtDNA) were measured. A small interfering RNA (siRNA) targeting PGC-1α and the CB1R antagonists AM251 and SR141716A were given to the animals before EA pretreatment, and mitochondrial function and biogenesis were examined after MCAO. EA ameliorated the mitochondrial function, upregulated the NRF1 and TFAM expression, and increased the mtDNA levels and the volume and number of mitochondria. EA pretreatment increased the expression of PGC-1α, whereas the PGC-1α siRNA and CB1R antagonists reversed the improved neuroprotection and increased mitochondrial biogenesis induced by EA. Our results indicated that EA pretreatment protects the mitochondria and promotes mitochondrial biogenesis by activating CB1R-dependent PGC-1α, which provides a novel mechanism for EA pretreatment-induced ischemic tolerance.


Assuntos
Eletroacupuntura , Biogênese de Organelas , Animais , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias
14.
Mol Neurobiol ; 57(9): 3875-3890, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32613465

RESUMO

Activation of microglia and mitochondrial dysfunction are two major contributors to the pathogenesis of sepsis-associated brain dysfunction. Mitochondrial dysfunction can alter the immunological profile of microglia favoring to a pro-inflammatory phenotype. Mitochondrial transplantation, as an emerging mitochondria-targeted therapy, possesses considerable therapeutic potential in various central nervous system injuries or diseases. However, the effects of mitochondrial transplantation on microglial polarization and neuroprotection after sepsis remain unclear. In this study, lipopolysaccharide (LPS)/interferon-γ (IFN-γ) and interleukin-4 (IL-4)/interleukin-13 (IL-13) were used to induce different phenotypes of BV2 microglial cells. We observed that mitochondrial content and function were enhanced in IL-4-/IL-13-stimulated microglia. In vitro, mitochondria treatment conferred neuroprotection by enhancing microglial polarization from the M1 phenotype to the M2 phenotype and suppressing microglial-derived inflammatory cytokine release. Furthermore, microglial phenotypes and behavior tests were assessed after mice were subjected to sepsis by cecal ligation and puncture (CLP) followed by intracerebroventricular injection of exogenous functional mitochondria. We found that mitochondrial transplantation induced microglial M2 rather than M1 response 24 h after sepsis. Mitochondrial transplantation improved behavioral deficits by increasing the latency time in inhibitory avoidance test and decreasing the number of crossing and rearing in the test session of open field test 10 days after CLP onset. These findings indicate that mitochondrial transplantation promotes the phenotypic conversion of microglia and improves cognitive impairment in sepsis survivors, supporting the potential use of exogenous mitochondrial transplantation therapy that may be a potential therapeutic opportunity for sepsis-associated brain dysfunction.


Assuntos
Encéfalo/fisiopatologia , Polaridade Celular , Microglia/patologia , Mitocôndrias/transplante , Sepse/complicações , Sepse/fisiopatologia , Animais , Comportamento Animal , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Biológicos , Neurônios/patologia , Fenótipo
15.
Front Cell Neurosci ; 13: 537, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866829

RESUMO

Electroacupuncture (EA) pretreatment alleviates cerebral ischemic injury through α7 nicotinic acetylcholine receptor (α7nAChR). We attempted to investigate whether the phenotypic conversion of microglia was involved in the therapeutic effect of EA pretreatment in cerebral ischemia through α7nAChR. Adult male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion (MCAO) after EA or α7nAChR agonist N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide hydrochloride (PHA-543,613 hydrochloride) and antagonist α-bungarotoxin (α-BGT) pretreatment. Primary microglia were subjected to drug pretreatment and oxygen-glucose deprivation (OGD). The expressions of the classical activated phenotype (M1) microglia markers induced nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), and cluster of differentiation 86 (CD86); the alternative activated phenotype (M2) microglia markers arginase-1 (Arg-1), transforming growth factor-ß1 (TGF-ß1), and cluster of differentiation 206 (CD206); and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) in the ischemic penumbra or in the supernatant of primary microglia were analyzed. The infarction volume and neurological scores were assessed 72 h after reperfusion. The cell viability and lactate dehydrogenase (LDH) release of neurons co-cultured with microglia were analyzed using cell counting kit-8 (CCK-8) and LDH release assays. EA pretreatment decreased the expressions of M1 markers (iNOS, IL-1ß, and CD86) and pro-inflammatory cytokines (TNF-α and IL-6), whereas it increased the expressions of M2 markers (Arg-1, TGF-ß1, and CD206) and anti-inflammatory cytokines (IL-4 and IL-10) by activating α7nAChR. EA pretreatment also significantly reduced the infarction volume and improved the neurological deficit. The activation of α7nAChR in microglia relieved the inflammatory response of primary microglia subjected to OGD and attenuated the injury of neurons co-cultured with microglia. In conclusion, EA pretreatment alleviates cerebral ischemic injury through α7nAChR-mediated phenotypic conversion of microglia, which may be a new mechanism for the EA pretreatment-induced neuroprotection against cerebral ischemia.

17.
Mol Med ; 25(1): 22, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117961

RESUMO

BACKGROUND: Our previous research confirmed that electroacupuncture (EA) stimulus elicits neuroprotective effects against cerebral ischemic injury through α7 nicotinic acetylcholine receptor (α7nAChR)-mediated inhibition of high-mobility group box 1 release mechanism. This study investigated whether the signal transducer of α7nAChR and inhibition of NLRP3 inflammasome are involved in the neuroprotective effects of EA stimulus. METHODS: In adult male Sprague-Dawley rats, the focal cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO) models for 1.5 h. The expression of NLRP3 inflammasome in the penumbral tissue following reperfusion was assessed by western blotting and immunoflourescent staining. The infarct size, neurological deficit score, TUNEL staining and the expression of proinflammatory factors or anti-inflammatory cytokines were evaluated at 72 h after reperfusion in the presence or absence of either α7nAChR antagonist (α-BGT) or agonist (PHA-543,613). RESULTS: The contents of inflammasome proteins were gradually increased after cerebral ischemia/reperfusion (I/R). EA stimulus attenuated NLRP3 inflammasome mediated inflammatory reaction and regulated the balance between proinflammatory factors and anti-inflammatory cytokines. The agonist of α7nAChR induced similar neuroprotective effects as EA stimulus. In contrast, α7nAChR antagonist reversed not only the neuroprotective effects, but also the inhibitory effects of NLRP3 inflammasome and the regulatory effects on the balance between proinflammatory factors and anti-inflammatory cytokines. CONCLUSIONS: These results provided compelling evidence that α7nAChR played a pivotal role in regulating the activation and expression of NLRP3 inflammasome in neurons after cerebral I/R. These findings highlighted a novel anti-inflammatory mechanism of EA stimulus by α7nAChR modulating the inhibition of NLRP3 inflammasome, suggesting that α7nAChR-dependent cholinergic anti-inflammatory system and NLRP3 inflammasome in neurons might act as potential therapeutic targets in EA induced neuroprotection against cerebral ischemic injury.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Eletroacupuntura/métodos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Marcação In Situ das Extremidades Cortadas , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Inflamação/metabolismo , Inflamação/terapia , Injeções Intraventriculares , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Quinuclidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
18.
Inflammation ; 42(3): 1082-1092, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30725252

RESUMO

Acute brain dysfunction and the following neurological manifestation are common complications in septic patients, which are associated with increased morbidity and mortality. However, the therapeutic strategy of this disorder remains a major challenge. Given the emerging role of a clinically approved drug, probenecid (PRB) has been recently identified as an inhibitor of pannexin 1 (PANX1) channel, which restrains extracellular ATP release-induced purinergic pathway activation and inflammatory response contributing to diverse pathological processes. In this study, we explored whether PRB administration attenuated neuroinflammatory response and cognitive impairment during sepsis. In mice suffered from cecal ligation and puncture (CLP)-induced sepsis, treatment with PRB improved memory retention and lessened behavioral deficits. This neuroprotective effect was coupled with restricted overproduction of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and interleukin (IL)-1ß in the hippocampus. Since this damped neuroinflammation was replicated by inhibition of ATP release, it suggested that PANX1 channel modulates a purinergic-related pathway contributing to the neurohistological damage. Therefore, we identified PRB could be a promising therapeutic approach for the therapy of cerebral dysfunction of sepsis.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Probenecid/farmacologia , Sepse/tratamento farmacológico , Adjuvantes Farmacêuticos , Animais , Córtex Cerebral/fisiopatologia , Transtornos Cognitivos/prevenção & controle , Conexinas/metabolismo , Inflamação/prevenção & controle , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Probenecid/uso terapêutico , Sepse/complicações
19.
Behav Brain Res ; 356: 322-331, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30213662

RESUMO

The available evidence showed that mitochondrial transfer by releasing the extracellular vesicles containing mitochondria from astrocytes to neurons exerted a neuroprotective effect after stroke. Whether extracellular mitochondrial replenishment could rescue the tissues from cerebral ischemic injury still needs to be explored completely. It was hypothesized that the augmentation of mitochondrial damage after cerebral ischemia could be resolved by timely replenishment of exogenous mitochondria. A stroke model of middle cerebral artery occlusion (MCAO) was used in this study to verify this hypothesis. This study found that the number of extracellular mitochondria increased in rat cerebrospinal fluid after MCAO, and a higher proportion of mitochondria were associated with good neurological outcomes. Following 90-min ischemia, autologously derived mitochondria (isolated from autologous pectoralis major) or vehicle alone was infused directly into the lateral ventricles, and the rats were allowed to recover for 4 weeks. A plenty of infused mitochondria were found to be distributed in the boundary and ischemic penumbra areas. Furthermore, the transplantation of mitochondria reduced cellular oxidative stress and apoptosis, attenuated reactive astrogliosis, and promoted neurogenesis after stroke. Moreover, the transplantation of mitochondria decreased brain infarct volume and reversed neurological deficits. The findings suggested that the delivery of mitochondria through the lateral ventricles resulted in their widespread distribution throughout the brain and exerted a neuroprotective effect after ischemia-reperfusion injury.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/transplante , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
20.
Appl Microbiol Biotechnol ; 102(24): 10541-10550, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30338355

RESUMO

Mixed infection of porcine circovirus type 2 (PCV2) and foot-and-mouth disease virus (FMDV) is devastating to swine populations. To develop an effective vaccine that can protect the pigs from the infection of PCV2 and FMDV, we used the neutralizing B cell epitope region (aa 135-160) of FMDV to replace the regions aa 123-151 and aa 169-194 of the PCV2b Cap protein to generate a recombinant protein designated as Capfb. The Capfb protein was expressed in Escherichia coli system and the purified Capfb protein assembled into virus-like particles (VLPs) through dialysis. The ability of the Capfb protein to induce effective immune response against FMDV and PCV2b was tested in mice and guinea pigs. The results showed that the Capfb-VLPs could elicit anti-PCV2b and anti-FMDV antibody response in mice and guinea pigs without inducing antibodies against decoy epitope. Moreover, the Capfb-VLPs could enhance the percentage and activation of B cells in lymph nodes when the mice were stimulated with inactivated FMDV or PCV2b. These data suggested that the Capfb-VLPs could be an efficacious candidate antigen for developing a novel PCV2b-FMDV bivalent vaccine.


Assuntos
Circovirus/imunologia , Vírus da Febre Aftosa/imunologia , Proteínas Recombinantes/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Circovirus/patogenicidade , Epitopos de Linfócito B/imunologia , Escherichia coli/genética , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/patogenicidade , Cobaias , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Vacinas Virais/genética , Vírion/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA