RESUMO
Electrosynthesis of urea from co-reduction of carbon dioxide and nitrate is a promising alternative to the industrial process. However, the overwhelming existence of proton and nitrate as well as the insufficient supply of CO2 at the reaction interface usually result in complex product distributions from individual nitrate reduction or hydrogen evolution, instead of C-N coupling. In this work, we systematically optimize this microenvironment through orderly coating of bilayer polymer to specifically tackle the above challenges. Polymer of intrinsic microporosity is chosen as the upper polymer to achieve physical sieving, realizing low water diffusivity for suppressing hydrogen evolution and high gas permeability for smooth mass transfer of CO2 at the same time. Polyaniline with abundant basic amino groups is capable of triggering chemical interaction with acidic CO2 molecules, so that is used as the underlying polymer to serve as CO2 concentrator and facilitate the carbon source supply for C-N coupling. Within this tailored microenvironment, a maximum urea generation yield rate of 1671.6 µg h-1 mg-1 and a high Faradaic efficiency of 75.3% are delivered once coupled with efficient electrocatalyst with neighboring active sites, which is among the most efficient system of urea electrosynthesis.
RESUMO
The reasonable design and modulation of the electronic properties of Pd metallene are acknowledged as a promising avenue for enhancing the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs), yet they remain a formidable challenge. Herein, a thin-sheet structure of Zr-doped Pd metallene (PdZr metallene) with abundant defects is proposed using a facile wet-chemical approach for efficient and highly durable ORR electrocatalysis. Multiple microstructural analyses uncover that orchestrated electronic and oxophilic regulation of PdZr metallene via Lewis-acidic Zr site modulation could concurrently optimize the electronic configuration of Pd, downshift the d-band center of Pd, and, thus, promote the intrinsic activity. Benefiting from the unique two-dimensional morphology and electronic structure optimization facilitated by the Zr coupling effect, the resultant PdZr metallene demonstrates significantly enhanced ORR electrocatalytic performance in basic solutions, with a high half-wave potential (E1/2) of 0.87 V and commendable stability for 30 000 s, surpassing those of Pd metallene and various advanced Pd-based catalysts reported in the literature. Encouragingly, the PdZr metallene-based AEMFC achieves an increased maximum power density (90.4 mW cm-2) and impressive robustness over 12 h in an alkaline environment, manifesting the practical application of PdZr metallene in AEMFCs. This study showcases the applicability of PdZr metallene via Lewis acid site regulation for fabricating highly active electrocatalysts for high-performance AEMFCs.
RESUMO
Ammonia (NH3) electrosynthesis from nitrogen (N2) provides a promising strategy for carbon neutrality, circumventing the energy-intensive and carbon-emitting Haber-Bosch process. However, the current system still presents unsatisfactory performance, and the bottleneck lies in the rational synthesis of catalytic centers with efficient N2 chemisorption ability. Herein, a heteroatom ensemble effect is deliberately triggered over RuFe alloy with spatial proximity of metal sites to promote electrocatalytic nitrogen reduction. The heteronuclear RuFe ensemble with increased surface polarization and modulated electronic structure offers the feasibility to optimize the adsorption configuration of electroactive substances and facilitate chemical bond scission. The promotion of N2 chemisorption and the following hydrogenation are demonstrated by the in situ Fourier transform infrared spectroscopy characterizations. The catalyst thus permits significantly enhanced conversion of N2 to NH3 in a 0.1 M HCl environment, with a maximum ammonia yield rate of 75.45 µg h-1 mg-1 and a high Faradaic efficiency of 35.49%.
RESUMO
The electrochemical conversion of nitrate pollutants into value-added ammonia (NH3) is an appealing alternative synthetic route for sustainable NH3 production. However, the development of the electrocatalytic nitrate-to-ammonia reduction reaction (NO3RR) has been hampered by unruly reactants and products at the interface and the accompanied sluggish kinetic rate. In this work, a built-in positive valence space is successfully constructed over FeCu nanocrystals to rationally regulate interfacial component concentrations and positively shift the chemical equilibrium. With positive valence Cu optimizing the active surface, the space between the stern and shear layers becomes positive, which is able to continuously attract the negatively charged NO3- reactant and repulse the positively charged NH4+ product even under high current density, thus significantly boosting the NO3RR kinetics. The system with a built-in positive valence space affords an ampere-level NO3RR performance with the highest NH3 yield rate of 150.27 mg h-1 mg-1 at -1.3 V versus RHE with an outstanding NH3 current density of 189.53 mA cm-2, as well as a superior Faradaic efficiency (FE) of 97.26% at -1.2 V versus RHE. The strategy proposed here underscores the importance of interfacial concentration regulation and can find wider applicability in other electrochemical syntheses suffering from sluggish kinetics.
RESUMO
Significant water-related side reactions hinder the development of highly safe, low-cost aqueous zinc metal batteries (AZMBs) for grid-scale energy storage. Herein, by regulating the length of alkyl chains, we successfully adjust interstitial voids between the polymer chains of a metal soap interface between 1.48 Å (size of a zinc ion) and 4.0 Å (size of a water molecule). Therefore, water molecules are selectively "size-excluded," while smaller zinc ions are permitted to pass through. Consequently, water-related side reactions (including hydrogen evolution and corrosion) could be effectively inhibited. Furthermore, abundant zinc ion tunnels accompanied with zincophilic components facilitate the homogenization of the Zn2+ flux, thus preventing dendrite growth. Therefore, the Zn symmetric cell shows a lifespan of approximately 10 000 cycles at 20 mA cm-2 and 1 mA h cm-2, and the Zn//Na5V12O32 (NVO) full cell delivers much better cycling stability with much higher capacity retention of around 93% after 2000 cycles at 2 A g-1 compared to its bare Zn counterpart (19%). This work provides valuable insights for the utilization of metal soap interfaces and regulation of their channel size between perpendicular alkyl chains to realize precise water shielding, which is not only applicable in ZMBs but also in other aqueous batteries.
RESUMO
Exploring efficient alkaline hydrogen oxidation reaction (HOR) electrocatalysts is of great concern for constructing anion exchange membrane fuel cells (AEMFCs). Herein, d-band center modulated PdCo alloys with ultralow Pd content anchored onto the defective carbon support (abbreviated as PdCo/NC hereafter) are proposed as highly efficient HOR catalyst. The as-prepared catalyst exhibits exceptional HOR performance compared to the Pt/C catalyst, achieving thermodynamically spontaneous and kinetically preferential reactions. Specifically, the resultant PdCo/NC demonstrates a marked enhancement in alkaline HOR performance, with the highest mass and specific activities of 1919.6 mA mgPd-1 and 1.9 mA cm-2, 51.1 and 4.2 times higher than those of benchmark of Pt/C, along with an excellent stability in a chronoamperometry test. In the analysis of in situ Raman spectra, it was discovered that tetrahedrally coordinated H-bonded water molecules were formed during the HOR process. This indicates that the promotion of interfacial water molecule formation and enhancement of HOR activities in PdCo/NC are facilitated by defect engineering and the turning of d-band center in PdCo alloy. The essential knowledge obtained in this study could open up a new direction for modifying the electronic structure of cost-effective HOR catalysts through electronic structure engineering.
RESUMO
Single-atom catalysts (SACs) have been widely studied in a variety of electrocatalysis. However, its application in the electrocatalytic nitrogen reduction reaction (NRR) field still suffers from unsatisfactory performance, due to the sluggish mass transfer and significant kinetic barriers. Herein, a novel rare-earth-lanthanum-evoked optimization strategy is proposed to boost ambient NRR over SACs. The incorporation of La with a large atomic radius tends to break the atomic long-range order and trigger the amorphization of SACs, endowing a greater density of dangling bonds that could modify affinity for reactants and adsorbates. Moreover, with unique 5d16s2 valence-electron configurations, its presence could further enrich the electron density and enhance the intrinsic activity of single-metal center via the valence orbital coupling. As expected, the La-modified catalyst presents excellent activity toward the electrochemical NRR, delivering a maximum ammonia yield rate of 33.91 µg h-1 mg-1 and a remarkable Faradaic efficiency of 53.82%.
RESUMO
Large-scale energy storage devices play pivotal roles in effectively harvesting and utilizing green renewable energies (such as solar and wind energy) with capricious nature. Biphasic self-stratifying batteries (BSBs) have emerged as a promising alternative for grid energy storage owing to their membraneless architecture and innovative battery design philosophy, which holds promise for enhancing the overall performance of the energy storage system and reducing operation and maintenance costs. This minireview aims to provide a timely review of such emerging energy storage technology, including its fundamental design principles, existing categories, and prototype architectures. The challenges and opportunities of this undergoing research topic will also be systematically highlighted and discussed to provide guidance for the subsequent R&D of superior BSBs while conducive to bridging the gap for their future practical application.
RESUMO
Electrochemical reduction of nitrate to ammonia (NO3RR) is a promising and eco-friendly strategy for ammonia production. However, the sluggish kinetics of the eight-electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd-based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure-activity relationship towards NO3RR. The ultra-thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants break the electronic balance and upshift its d-band center, thus optimizing intermediates adsorption. The anisotropic electronic characteristics of these transition metals make the NO3RR activity in the order of PdCu>PdCo≈PdFe>PdNi>Pd, and a record-high NH3 yield rate of 295â mg h-1 mgcat -1 along with Faradaic efficiency of 90.9 % is achieved in neutral electrolyte on PdCu bimetallene. Detailed studies further reveal that the moderate N-species (*NO3 and *NO2) adsorption ability, enhanced *NO activation, and reduced HER activity facilitate the NH3 production. We believe our results will give a systematic guidance to the future design of NO3RR catalysts.
RESUMO
The industrialization of aqueous zinc-ion batteries (AZIBs) is hampered by poor-performance separators. Filter paper (FP), with mature production processes and low prices, has potential as a separator. However, its swelling and decline of mechanical durability in aqueous environments make it easily punctured by dendrites. In response, wet strength promotion is proposed to toughen FP for robust AZIBs, termed wet-strengthened FP (WSFP). Due to the self-cross-linking network formed on cellulose fibers, water molecules are prevented from easily permeating and disrupting the hydrogen bonds between cellulose molecules. Moreover, the positively charged network can anchor SO42-, thus increasing the Zn2+ transference number and facilitating uniform zinc deposition. Surprisingly, the half and full cells with the WSFP separator present much more stable cycling than untreated FP and glass fiber (GF) separators. These results suggest that robust and low-cost WSFP separators provide a new avenue for the development of high-performance AZIBs with potential for commercialization.
RESUMO
The development of efficient and durable high-current-density hydrogen production electrocatalysts is crucial for the large-scale production of green hydrogen and the early realization of hydrogen economic blueprint. Herein, the evolution of grain boundaries through Cu-mediated NiMo bimetallic oxides (MCu-BNiMo), which leading to the high efficiency of electrocatalyst for hydrogen evolution process (HER) in industrial-grade current density, is successfully driven. The optimal MCu0.10-BNiMo demonstrates ultrahigh current density (>2 A cm-2) at a smaller overpotential in 1 m KOH (572 mV), than that of BNiMo, which does not have lattice strain. Experimental and theoretical calculations reveal that MCu0.10-BNiMo with optimal lattice strain generated more electrophilic Mo sites with partial oxidation owing to accelerated charge transfer from Cu to Mo, which lowers the energy barriers for H* adsorption. These synergistic effects lead to the enhanced HER performance of MCu0.10-BNiMo. More importantly, industrial application of MCu0.10-BNiMo operated in alkaline electrolytic cell is also determined, with its current density reached 0.5 A cm-2 at 2.12 V and 0.1 A cm-2 at 1.79 V, which is nearly five-fold that of the state-of-the-art HER electrocatalyst Pt/C. The strategy provides valuable insights for achieving industrial-scale hydrogen production through a highly efficient HER electrocatalyst.
RESUMO
Expediting the torpid kinetics of the oxygen reduction reaction (ORR) at the cathode with minimal amounts of Pt under acidic conditions plays a significant role in the development of proton exchange membrane fuel cells (PEMFCs). Herein, a novel Pt-N-C system consisting of Pt single atoms and nanoparticles anchored onto the defective carbon nanofibers is proposed as a highly active ORR catalyst (denoted as Pt-N-C). Detailed characterizations together with theoretical simulations illustrate that the strong coupling effect between different Pt sites can enrich the electron density of Pt sites, modify the d-band electronic environments, and optimize the oxygen intermediate adsorption energies, ultimately leading to significantly enhanced ORR performance. Specifically, the as-designed Pt-N-C demonstrates exceptional ORR properties with a high half-wave potential of 0.84 V. Moreover, the mass activity of Pt-N-C reaches 193.8 mA gPt-1 at 0.9 V versus RHE, which is 8-fold greater than that of Pt/C, highlighting the enormously improved electrochemical properties. More impressively, when integrated into a membrane electrode assembly as cathode in an air-fed PEMFC, Pt-N-C achieved a higher maximum power density (655.1 mW cm-2) as compared to Pt/C-based batteries (376.25 mW cm-2), hinting at the practical application of Pt-N-C in PEMFCs.
RESUMO
Solid composite electrolytes (SCEs) synergize inorganic and polymer merits for viable commercial application. However, inferior filler-polymer interfacial stability ultimately leads to the agglomeration of inorganic particles and greatly impedes Li+ migration. Herein, triethoxyvinylsilane (VTEO) is employed to form a strong chemical interaction between poly(vinylene carbonate) (PVC) and montmorillonite (MMT) via in situ solidification, which eliminates the agglomeration and improves interfacial compatibility. Consequently, the obtained solid composite electrolytes (PVC-s-MMT) achieve increased Li+ conductivity (0.4 mS cm-1 at 25 °C), enhanced transference number (0.74), and increased oxidation potential (5.2 V). The Li/PVC-s-MMT/LiFePO4 cells exhibit outstanding cycling performance (>99.5% after 600 cycles) at 1C at room temperature. Moreover, density functional theory (DFT) calculations are applied to uncover the fast interfacial conducting channels of PVC-s-MMT. Our work provides a feasible in situ synthesis method to prepare agglomeration-free SCEs, which is highly compatible with existing battery production processes of liquid electrolytes.
RESUMO
With its efficient nitrogen fixation kinetics, electrochemical lithium-mediated nitrogen reduction reaction (LMNRR) holds promise for replacing Haber-Bosch process and realizing sustainable and green ammonia production. However, the general interface problem in lithium electrochemistry seriously impedes the further enhancement of LMNRR performance. Inspired by the development history of lithium battery electrolytes, here, we extend the ring-chain solvents coupling law to LMNRR system to rationally optimize the interface during the reaction process, achieving nearly a two-fold Faradaic efficiency up to 54.78±1.60 %. Systematic theoretical simulations and experimental analysis jointly decipher that the anion-rich Li+ solvation structure derived from ring tetrahydrofuran coupling with chain ether successfully suppresses the excessive passivation of electrolyte decomposition at the reaction interface, thus promoting the mass transfer of active species and enhancing the nitrogen fixation kinetics. This work offers a progressive insight into the electrolyte design of LMNRR system.
RESUMO
Despite the numerous advantages of aqueous Zn batteries, their practical application under cryogenic conditions is hindered by the freezing of the electrolyte because the abundance of hydrogen bonds (H-bonds) between H2O molecules drives the aqueous system to transform to an orderly frozen structure. Here, a design of H-bond interactions based on the guiding ideology of "strong replaces weak" is proposed. The strong H-bonds formed between introduced eutectic components and water molecules break down the weak H-bonds in the original water molecule network, which contributes to an ultralow freezing point and a high ionic conductivity of 1.7 mS cm-1 at -40 °C. Based on multiperspective theoretical simulations and tailor-made in situ cooling Raman characterizations, it has been demonstrated that substituting weak H-bonds with strong H-bonds facilitates the structural reshaping of Zn2+ solvation and remodeling of the H-bond network in the electrolyte. Endowed with this advantage, reversible and stable Zn plating/stripping behaviors could be realized at -40 °C, and the full cells display a high discharge capacity (200 mA h g-1) at -40 °C with â¼75% capacity retention after 1000 cycles. This study will expand the design philosophy of antifreezing aqueous electrolytes and provide a perspective to promote the adoption of Zn metal batteries for cryogenic environment large-scale energy storage.
RESUMO
Dendrite growth and corrosion of Zn metal anodes result in the limited reversibility of aqueous Zn metal batteries (ZMBs), hindering their prospects as large-scale energy storage devices. Inspired by the similarity of conventional electroplating industrial engineering and Zn deposition in ZMBs, we tend to utilize a low-cost leveling agent (LEA), 1,4-butynediol, to level the Zn deposition. Combining theoretical with in situ experimental characterizations, the preferential adsorption of LEA molecules on different lattice planes can contribute to crystallographic orientation manipulation of the (002) plane, causing good inhibition of dendrite growth. Additionally, the adsorption of LEA molecules on the Zn surface can also prevent undesirable corrosion. Endowed with these merits, symmetric cells and full cells with the LEA additive achieve improved stability and reversibility. This work provides new inspiration for introducing traditional electroplating additives into high-performance ZMBs and gives researchers a direction for choosing electrolyte additives, which also has potential to be applied to other metal anodes.
RESUMO
Side reactions caused by highly active water molecules, including severe corrosion, hydrogen evolution, and dendrite growth, are impediments to the advancement of aqueous zinc ion batteries (ZIBs). Here, inspired by the pivotal role of plant fibers to prevent dehydration in nature, we designed a unique water-retaining plant fiber (WRPF) separator with strong hygroscopic ability to adsorb and trap water molecules. Elaborated theoretical and experimental characterizations prove that high-activity water could be sequestered by a WRPF separator, alleviating water-induced side reactions and accelerating the desolvation of hydrate Zn2+. Prominently, reversible Zn plating and stripping could be realized in Zn//Cu batteries. Even with elevated cathodic mass loading (21.94 mg cm-2), the Zn//VS2 full cell delivers high areal capacity 3.3 mAh cm-2 and well-maintained stability. The present study offers a versatile design strategy for separators using nature-inspired materials, aiming to address the challenging issue of "water" and achieve ultrastable interfacial chemistry of Zn anode.
RESUMO
The batch production of high-purity hydrogen is a key problem that restricts the progress of fuel cells and the blueprint for achieving carbon neutrality. Transition-metal chalcogenide heterojunctions exhibit certain activity toward electrochemical overall water splitting (EOWS), but their high-current-density catalytic performances are still unsatisfactory due to the slow kinetic progression (H* or *O â *OOH). Inspired by the "electron pocket" theory, we designed a Ni-Mo bimetallic disulfide interface heterojunction electrocatalyst system (NM-IHJ-V) with high electronic storage capacity around the Fermi level (-0.5 eV, +0.5 eV) (e-DFE), which injects more power into the kinetic progression processes of intermediate species in the EOWS process. Consequently, it achieves a superhigh current density of 2 A cm-2 level for EOWS (only 1.98 V voltage is needed), which is 11.23-fold higher than that of the benchmarked Pt/C//IrO2 (178 mA cm-2@1.98 V), as well as an excellent long-term stability of 200 h. Most strikingly, NM-IHJ-V can efficiently produce hydrogen at currents up to 5 A. Our proposed strategy of constructing catalysts to produce hydrogen at superhigh current density through the electron pocket theory will supply valuable insights for the designing other catalytic systems.
RESUMO
Electrochemical nitrogen reduction reaction (NRR) is a burgeoning field for green and sustainable ammonia production, in which numerous potential catalysts emerge endlessly. However, satisfactory performances are still not realized under practical applications due to the limited solubility and sluggish diffusion of nitrogen at the interface. Herein, molecular imprinting technology is adopted to construct an adlayer with abundant nitrogen imprints on the electrocatalyst, which is capable of selectively recognizing and proactively aggregating high-concentrated nitrogen at the interface while hindering the access of overwhelming water simultaneously. With this favorable microenvironment, nitrogen can preferentially occupy the active surface, and the NRR equilibrium can be positively shifted to facilitate the reaction kinetics. Approximately threefold improvements in both ammonia production rate (185.7 µg h-1 mg-1 ) and Faradaic efficiency (72.9%) are achieved by a metal-free catalyst compared with the bare one. It is believed that the molecular imprinting strategy should be a general method to find further applicability in numerous catalysts or even other reactions facing similar challenges.
RESUMO
Electrocatalytic nitrogen reduction reaction offers a sustainable alternative to the conventional Haber-Bosch process. However, it is currently restricted by low effective overpotential due to the concentration polarization, which arises from accumulated products, ammonium, at the reaction interface. Here, a novel covalent organic polymer with ordered periodic cationic sites is proposed to tackle this challenge. The whole network exhibits strong positive charge and effectively repels the positively charged ammonium, enabling an ultra-low interfacial product concentration, and successfully driving the reaction equilibrium to the forward direction. With the given potential unchanged, the suppressed overpotential can be much liberated, ultimately leading to a continuous high-level reaction rate. As expected, when this tailored microenvironment is coupled with a transition metal-based catalyst, a 24-fold improvement is generated in the Faradaic efficiency (73.74 %) as compared with the bare one. The proposed strategy underscores the importance of optimizing dynamic processes as a means of improving overall performance in electrochemical syntheses.