Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
ChemMedChem ; : e202400110, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847101

RESUMO

N-acetylcysteine (NAC) is a commonly used mucolytic agent and antidote for acetaminophen overdose. For pulmonary diseases, NAC exhibits antioxidative properties, regulates cytokine production, reduces apoptosis of lung epithelial cells, and facilitates the resolution of inflammation. However, the efficacy of NAC in clinical trials targeting different pathological conditions is constrained by its short half-life and low bioavailability. In the present study, a series of NAC derivatives were designed and synthesized to further enhance its pharmacological activity. Structure-activity relationship (SAR) studies were conducted to optimize the activating groups. In vitro evaluations revealed that compounds 4r, 4t, 4w, and 4x exhibited superior antioxidative and anti-inflammatory activities compared to the positive controls of NAC and fudosteine. The ADME prediction analysis indicated that these compounds exhibited a favorable pharmacological profile. In-vivo experiments with compound 4r demonstrated that the high-dose group (80 mg/kg) exhibited improved therapeutic effects in reversing the HPY level in mice with pulmonary fibrosis compared to the NAC group (500 mg/kg), further proving its superior oral bioavailability and therapeutic effect compared to NAC.

2.
Acta Pharm Sin B ; 14(5): 2281-2297, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799628

RESUMO

Cuproptosis shows enormous application prospects in lung metastasis treatment. However, the glycolysis, Cu+ efflux mechanisms, and insufficient lung drug accumulation severely restrict cuproptosis efficacy. Herein, an inhalable poly (2-(N-oxide-N,N-diethylamino)ethyl methacrylate) (OPDEA)-coated copper-based metal-organic framework encapsulating pyruvate dehydrogenase kinase 1 siRNA (siPDK) is constructed for mediating cuproptosis and subsequently promoting lung metastasis immunotherapy, namely OMP. After inhalation, OMP shows highly efficient lung accumulation and long-term retention, ascribing to the OPDEA-mediated pulmonary mucosa penetration. Within tumor cells, OMP is degraded to release Cu2+ under acidic condition, which will be reduced to toxic Cu+ to induce cuproptosis under glutathione (GSH) regulation. Meanwhile, siPDK released from OMP inhibits intracellular glycolysis and adenosine-5'-triphosphate (ATP) production, then blocking the Cu+ efflux protein ATP7B, thereby rendering tumor cells more sensitive to OMP-mediated cuproptosis. Moreover, OMP-mediated cuproptosis triggers immunogenic cell death (ICD) to promote dendritic cells (DCs) maturation and CD8+ T cells infiltration. Notably, OMP-induced cuproptosis up-regulates membrane-associated programmed cell death-ligand 1 (PD-L1) expression and induces soluble PD-L1 secretion, and thus synergizes with anti-PD-L1 antibodies (aPD-L1) to reprogram immunosuppressive tumor microenvironment, finally yielding improved immunotherapy efficacy. Overall, OMP may serve as an efficient inhalable nanoplatform and afford preferable efficacy against lung metastasis through inducing cuproptosis and combining with aPD-L1.

3.
Eur J Pharm Sci ; 197: 106779, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670294

RESUMO

Orally marketed products nintedanib (NDNB) and pirfenidone (PFD) for pulmonary fibrosis (PF) are administered in high doses and have been shown to have serious toxic and side effects. NDNB can cause the elevation of galectin-3, which activates the NF-κB signaling pathway and causes the inflammatory response. S-allylmercapto-N-acetylcysteine (ASSNAC) can alleviate the inflammation response by inhibiting the TLR-4/NF-κB signaling pathway. Therefore, we designed and prepared inhalable ASSNAC and NDNB co-loaded liposomes for the treatment of pulmonary fibrosis. The yellow, spheroidal co-loaded liposomes with a particle size of 98.32±1.98 nm and zeta potential of -22.5 ± 1.58 mV were produced. The aerodynamic fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of NDNB were >50 % (81.14 %±0.22 %) and <5 µm (1.79 µm±0.06 µm) in the nebulized liposome solution, respectively. The results showed that inhalation improved the lung deposition and retention times of both drugs. DSPE-PEG 2000 in the liposome formulation enhanced the mucus permeability and reduced phagocytic efflux mediated by macrophages. ASSNAC reduced the mRNA over-expressions of TLR-4, MyD88 and NF-κB caused by NDNB, which could reduce the NDNB's side effects. The Masson's trichrome staining of lung tissues and the levels of CAT, TGF-ß1, HYP, collagen III and mRNA expressions of Collagen I, Collagen III and α-SMA in lung tissues revealed that NDNB/Lip inhalation was more beneficial to alleviate fibrosis than oral NDNB. Although the dose of NDNB/Lip was 30 times lower than that in the oral group, the inhaled NDNB/Lip group had better or comparable anti-fibrotic effects to those in the oral group. According to the expressions of Collagen I, Collagen III and α-SMA in vivo and in vitro, the combination of ASSNAC and NDNB was more effective than the single drugs for pulmonary fibrosis. Therefore, this study provided a new scheme for the treatment of pulmonary fibrosis.


Assuntos
Acetilcisteína , Indóis , Lipossomos , Pulmão , Fibrose Pulmonar , Animais , Indóis/administração & dosagem , Indóis/química , Indóis/farmacocinética , Acetilcisteína/administração & dosagem , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Administração por Inalação , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Masculino , Tamanho da Partícula
4.
J Drug Target ; 32(2): 159-171, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133515

RESUMO

Introduction: Non-small cell lung cancer (NSCLC) accounting for about 80-85% of all lung cancer cases is one of the fastest-growing malignancies in terms of incidence and mortality worldwide and is commonly treated with cisplatin (DDP). Although treatment may initially be effective, the DDP therapy often leads to the development of chemoresistance and treatment failure. Disulphiram (DSF), an old alcohol-aversion drug, has been revealed to help reverse drug resistance in several cancers. In addition, several studies have shown a close relationship between drug resistance and cancer cell stemness.Methods: In this study, DDP and DSF were embedded in hydroxypropyl-ß-cyclodextrin (CD) to prepare a co-loaded inclusion complex of DDP and DSF (DDP-DSF/CD) with enhanced solubility and therapeutic effects. The effects and mechanism of DSF on the DDP resistance from the perspective of cancer cell stemness were determined.Results: Our data show that DDP-DSF/CD increased cytotoxicity and apoptosis of DDP-resistant A549 (A549/DDP) cells, inhibited stem cell transcriptional regulatory genes and drug resistance-associated proteins and reversed the DDP resistance in vitro and in vivo.Discussion: Overall, DDP-DSF/CD could be a promising formulation for the reversal of DDP resistance in NSCLC by inhibiting cancer cell stemness.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Cisplatino , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células A549
5.
Nanoscale ; 14(41): 15543, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36239284

RESUMO

Correction for 'Eliciting an immune hot tumor niche with biomimetic drug-based multi-functional nanohybrids augments immune checkpoint blockade-based breast cancer therapy' by Wei Du et al., Nanoscale, 2020, 12, 3317-3329, https://doi.org/10.1039/C9NR09835F.

6.
Org Biomol Chem ; 19(36): 7930-7936, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549229

RESUMO

Nanoluciferase (NLuc) is the emerging commercially available luciferase considering its small size and superior bioluminescence performance. Nevertheless, this bioluminescence system has some limitations, including narrow emission wavelength and single substrate. Herein, a series of novel furimazine derivatives at the C-6 and C-8 positions of the imidazopyrazinone core have been designed and synthesized for extension of the bioluminescence substrates. It should be noted that two compounds, molecules A2 (2-(furan-2-ylmethyl)-6-(4-(hydroxymethyl)phenyl)-8-(phenylthio)imidazo[1,2-a]pyrazin-3(7H)-one) and A3 (2-(furan-2-ylmethyl)-6-(4-amino-3-fluorophenyl)-8-(phenylthio)imidazo[1,2-a]pyrazin-3(7H)-one), display reasonable bioluminescence properties for in vitro and in vivo biological evaluations. In particular, compound A3 can broaden the application of NLuc bioluminescence techniques, especially for in vivo bioluminescent imaging.

8.
Bioorg Med Chem Lett ; 30(9): 127085, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171617

RESUMO

NanoLuc (NLuc)-furimazine bioluminescence system offers several advantages over established systems, including improved stability, smaller size, and >150-fold enhancement in bioluminescence. Herein, we designed and synthesized a series of bioluminescent substrates with varying at the C-6 position of furimazine for NLuc-furimazine bioluminescence system. Among all derivatives, compounds A6 and A11 provided excellent bioluminescence characteristics compared with furimazine in vitro and in vivo. We believe that these new NLuc substrates can broaden the application of NLuc bioluminescence techniques, especially in vivo bioluminescent imaging.


Assuntos
Desenho de Fármacos , Furanos/química , Imidazóis/química , Luciferases/metabolismo , Medições Luminescentes/métodos , Pirazinas/química , Células A549 , Animais , Regulação Enzimológica da Expressão Gênica , Humanos , Luciferases/síntese química , Luciferases/química , Camundongos , Camundongos Nus , Nanotecnologia/métodos , Neoplasias Experimentais
9.
Nanoscale ; 12(5): 3317-3329, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31976511

RESUMO

Immune checkpoint blockade (ICB) has emerged as one of the breakthrough approaches for tumor immunotherapy. However, known as an immune "cold" tumor, breast cancer harbors an immunosuppressive tumor niche that compromises ICB-based therapy. Chemoimmunotherapy combines a chemotherapeutic with an immune-modulating agent, representing a promising tactic to combat cancers, while the lack of effectively targeted co-delivery strategy is one of the main obstacles to achieve the synergistic utilization. Herein, self-assembled PEGylated pure drug-based nanohybrids (DNH) were created, which could evoke immunogenic cell death (ICD), aiding ICB-based immunotherapy by controlling the spatiotemporal release of oxaliplatin (OXA) and small molecular inhibitor 1-methyl-d-tryptophan (1-MT). Furthermore, biomimetic functionalization was exploited by nature killer cell membrane camouflaging to target cancerous cells as well as by elicit immune response through inducing M1 macrophage polarization. The drug release profiles of the nanosystem were investigated in the presence of low pH and intracellular reductants. Systemic in vivo bio-behaviors were evaluated via pharmacokinetics and biodistribution. As an "all-in-one" pure drug-based codelivery system, our biomimetic nanoplatform possessed multiple immunomodulation functions, which markedly aided in increasing the frequency of immune responders and generate an immune "hot" breast tumor niche, and eventually allowed to boost breast cancer therapy.


Assuntos
Materiais Biomiméticos , Neoplasias da Mama , Nanopartículas , Oxaliplatina , Triptofano/análogos & derivados , Microambiente Tumoral , Animais , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Oxaliplatina/farmacocinética , Oxaliplatina/farmacologia , Triptofano/farmacocinética , Triptofano/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Anal Chem ; 91(23): 15235-15239, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691553

RESUMO

GPR120 is a novel target for the treatment of metabolic disease and type 2 diabetes. The small-molecule fluorescent probe could help us locate GPR120 visually and guide in-depth study of GPR120. In this study, we synthesized six nonacidic sulfonamide fluorescent probes and tested their optical and biological properties. Compared to previous probes for GPR120, these probes, with sulfonamide structure, have high selectivity on GPR120. We used these probes to establish a BRET binding assay system to screen agonists and antagonists of GPR120. It is expected that these novel fluorescent probes may become useful tools in studying pharmacology and physiology of GPR120.


Assuntos
Descoberta de Drogas , Corantes Fluorescentes/química , Receptores Acoplados a Proteínas G/análise , Bibliotecas de Moléculas Pequenas/química , Sulfonamidas/química , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Sulfonamidas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA