Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nanoscale ; 16(29): 14108-14115, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39007402

RESUMO

Inorganic CsPbI3 perovskite nanocrystals (NCs) exhibit remarkable optoelectronic properties for illumination. However, their poor stability has hindered the development of light-emitting diodes (LEDs) based on these materials. In this study, we propose a facile method to synthesize Mg2+-doped CsPbI3 NCs with enhanced stability and high photoluminescence (PL) intensity under ambient air conditions. Theoretical calculations confirm that doped NCs possess stronger formation energy compared to undoped NCs. The undoped CsPbI3 NCs emit red light at approximately 653 nm. We optimize the doping ratio to 1/30, which significantly enhances the photoluminescence of single-particle CsPbI3 NCs. Subsequently, we fabricate a red LED by combining the CsPbI3 NCs with a blue chip. The resulting LED, based on the doped CsPbI3 NCs, exhibits excellent performance with a high luminance of 4902.22 cd m-2 and stable color coordinates of (0.7, 0.27). This work not only presents a simple process for synthesizing perovskite NCs but also provides a design strategy for developing novel red LEDs for various applications.

2.
Sci Rep ; 14(1): 12427, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816543

RESUMO

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Assuntos
Ácidos Cafeicos , Hemorragia Cerebral , Ferroptose , Lactatos , Fármacos Neuroprotetores , Animais , Ferroptose/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ratos , Lactatos/farmacologia , Lactatos/química , Lactatos/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Mol Cell Biochem ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459276

RESUMO

Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-ex) have become a hopeful substitute for whole-cell therapy due to their minimal immunogenicity and tumorigenicity. The present study aimed to investigate the hypothesis that hUCMSC-ex can alleviate excessive inflammation resulting from intracerebral hemorrhage (ICH) and facilitate the rehabilitation of the nervous system in rats. In vivo, hemorrhagic stroke was induced by injecting collagenase IV into the striatum of rats using stereotactic techniques. hUCMSC-ex were injected via the tail vein at 6 h after ICH model establishment at a dosage of 200 µg. In vitro, astrocytes were pretreated with hUCMSC-ex and then stimulated with hemin (20 µmol/mL) to establish an ICH cell model. The expression of TLR4/NF-κB signaling pathway proteins and inflammatory factors, including TNF-α, IL-1ß, and IL-10, was assessed both in vivo and in vitro to investigate the impact of hUCMSC-ex on inflammation. The neurological function of the ICH rats was evaluated using the corner turn test, forelimb placement test, Longa score, and Bederson score on the 1st, 3rd, and 5th day. Additionally, RT-PCR was employed to examine the mRNA expression of TLR4 following hUCMSC-ex treatment. The findings demonstrated that hUCMSC-ex downregulated the protein expression of TLR4, NF-κB/P65, and p-P65, reduced the levels of pro-inflammatory cytokines TNF-α and IL-1ß, and increased the expression of the anti-inflammatory cytokine IL-10. Ultimately, the administration of hUCMSC-ex improved the behavioral performance of the ICH rats. However, the results of PT-PCR indicated that hUCMSC-ex did not affect the expression of TLR4 mRNA induced by ICH, suggesting that hUCMSCs-ex may inhibit TLR4 translation rather than transcription, thereby suppressing the TLR4/NF-κB signaling pathway. We can conclude that hUCMSC-ex mitigates hyperinflammation following ICH by inhibiting the TLR4/NF-κB signaling pathway. This study provides preclinical evidence for the potential future application of hUCMSC-ex in the treatment of cerebral injury.

4.
Pest Manag Sci ; 80(8): 3967-3978, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520371

RESUMO

BACKGROUND: Crop quality, yield and farmer income are reduced by soil-borne diseases, nematodes and weeds, although these can be controlled by allyl isothiocyanate (AITC), a plant-derived soil fumigant. However, its efficacy against soil-borne pathogens varies, mainly because of its chemical instability and uneven distribution in the soil. Formulation modification is an effective way to optimize pesticide application. We encapsulated AITC in modified diatomite granules (GR) and measured the formulation's loading content and stability, environmental fate and efficacy against soil-borne pathogens, and its impact on the growth and yield of tomatoes. RESULTS: We observed that an AITC loading content in the granules of 27.6% resulted in a degradation half-life of GR that was 1.94 times longer than 20% AITC emulsifiable concentrate in water (EW) and shorter than AITC technical (TC) grade. The stable and more even distribution of GR in soil resulted in relatively consistent and acceptable control of soil-borne pathogens. Soil containing AITC residues that remained 10-24 days after GR fumigation were not phytotoxic to cucumber seeds. GR significantly reduced soil-borne pest populations, and tomato growth and yield increased as AITC dosage increased. GR containing an AITC dose of 20 g m-2 effectively controlled pathogens in soil for about 7 months and improved tomato yield by 108%. CONCLUSION: Our research demonstrates the benefits of soil fumigation with loaded AITC over other formulations for effective pest control, and improved tomato plant growth and fruit yield. Fumigant encapsulation appears to be a useful method to improve pest and disease control, environmental performance and fumigant commercial sustainability. © 2024 Society of Chemical Industry.


Assuntos
Fumigação , Isotiocianatos , Doenças das Plantas , Microbiologia do Solo , Solo , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Isotiocianatos/farmacologia , Doenças das Plantas/prevenção & controle , Solo/química , Fumigação/métodos , Terra de Diatomáceas , Animais , Praguicidas/farmacologia , Cucumis sativus/crescimento & desenvolvimento
5.
J Hazard Mater ; 469: 133916, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479137

RESUMO

Aflatoxins from the fungus Aspergillus flavus (A. flavus) that contaminate stored peanuts is a major hazard to human health worldwide. Reducing A. flavus in soil can decrease the risk of aflatoxins in stored peanuts. In this experiment, we determined whether peanuts grown on soil fumigated with dazomet (DZ), metham sodium (MS), allyl isothiocyanate (AITC), chloropicrin (PIC) or dimethyl disulfide (DMDS) would reduce of the quantity of A. flavus and its toxin's presence. The results of bioassays and field tests showed that PIC was the most effective fumigant for preventing and controlling A. flavus, followed by MS. PIC and MS applied to the soil for 14 d resulted in LD50 values against A. flavus of 3.558 and 4.893 mg kg-1, respectively, leading to almost 100% and 98.82% effectiveness of A. flavus, respectively. Peanuts harvested from fumigated soil and then stored for 60 d resulted in undetectable levels of aflatoxin B1 (AFB1) compared to unfumigated soil that contained 0.64 ug kg-1 of AFB1, which suggested that soil fumigation can reduce the probability of aflatoxin contamination during peanut storage and showed the potential to increase the safety of peanuts consumed by humans. Further research is planned to determine the practical value of our research in commercial practice.


Assuntos
Aflatoxina B1 , Aflatoxinas , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/análise , Arachis , Solo , Desinfecção , Aspergillus flavus , Aflatoxinas/toxicidade , Aflatoxinas/análise
6.
Exp Cell Res ; 436(2): 113960, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311048

RESUMO

PURPOSE: Intracerebral hemorrhage (ICH) results in substantial morbidity, mortality, and disability. Depleting neural cells in advanced stages of ICH poses a significant challenge to recovery. The objective of our research is to investigate the potential advantages and underlying mechanism of exosomes obtained from human umbilical cord mesenchymal stem cells (hUMSCs) pretreated with monosialoteterahexosyl ganglioside (GM1) in the prevention of secondary brain injury (SBI) resulting from ICH. PATIENTS AND METHODS: In vitro, hUMSCs were cultured and induced to differentiate into neuron-like cells after they were pretreated with 150 µg/mL GM1. The exosomes extracted from the culture medium following a 6-h pretreatment with 150 µg/mL GM1 were used as the treatment group. Striatal infusion of collagenase and hemoglobin (Hemin) was used to establish in vivo and in vitro models of ICH. RESULTS: After being exposed to 150 µg/mL GM1 for 6 h, specific cells displayed typical neuron-like cell morphology and expressed neuron-specific enolase (NSE). The rate of differentiation into neuron-like cells was up to (15.9 ± 5.8) %, and the synthesis of N-Acetylgalactosaminyltransferase (GalNAcT), which is upstream of GM1, was detected by Western blot. This study presented an increase in the synthesis of GalNAcT. Compared with the ICH group, apoptosis in the treatment group was remarkably reduced, as detected by TUNEL, and mitochondrial membrane potential was restored by JC-1. Additionally, Western blot revealed the restoration of up-regulated autophagy markers Beclin-1 and LC3 and the down-regulation of autophagy marker p62 after ICH. CONCLUSION: These findings suggest that GM1 is an effective agent to induce the differentiation of hUMSCs into neuron-like cells. GM1 can potentially increase GalNAcT production through "positive feedback", which generates more GM1 and promotes the differentiation of hUMSCs. After pretreatment with GM1, exosomes derived from hUMSCs (hUMSCs-Exos) demonstrate a neuroprotective effect by inhibiting autophagy in the ICH model. This study reveals the potential mechanism by which GM1 induces differentiation of hUMSCs into neuron-like cells and confirms the therapeutic effect of hUMSCs-Exos pretreated by GM1 (GM1-Exos) on an ICH model, potentially offering a new direction for stem cell therapy in ICH.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Gangliosídeos/metabolismo , Gangliosídeo G(M1)/metabolismo , Autofagia/fisiologia , Células-Tronco Mesenquimais/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Cordão Umbilical
7.
Sci Total Environ ; 919: 170882, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342465

RESUMO

Manganese is one of the essential trace elements for plants to maintain normal life activities. Soil fumigation, while effectively controlling soil-borne diseases, can also improve the cycling of soil nutrient elements. MiSeq amplicon sequencing is used to determine the composition of soil microbial communities, and structural equation modeling and the random forest algorithm are employed to conduct a correlation analysis between key manganese-oxidizing microorganisms and soil manganese availability. This experiment investigated the microbial mechanisms behind the observed increase in available manganese in soil after fumigation. The key findings revealed that Bacillus, GeoBacillus, GraciliBacillus, Chungangia, and Pseudoxanthomonas play crucial roles in influencing the variation in soil available manganese content. Fumigation was found to elevate the abundance of Bacillus. Moreover, laccase activity emerged as another significant factor impacting soil manganese availability, showing an indirect correlation with available manganese content and contributing to 58 % of the observed variation in available manganese content. In summary, alterations in the communities of manganese-oxidizing microorganisms following soil fumigation are pivotal for enhancing soil manganese availability.


Assuntos
Bacillus , Microbiota , Solanum lycopersicum , Solo/química , Bactérias , Manganês , Fumigação , Oxirredução , Microbiologia do Solo
8.
Environ Pollut ; 341: 122791, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37940016

RESUMO

Fusarium oxysporum is an important phytopathogenic fungus, it can be controlled by the soil fumigant methyl isothiocyanate (MITC). However, the antimicrobial mechanism of MITC against F. oxysporum, especially at the transcriptional level, is still unclear. In this experiment, the antimicrobial mechanism of MITC against F. oxysporum was investigated. Our results indicated that when F. oxysporum was exposed to 6 mg/L MITC for 12 h, the inhibitory rate of MITC on F. oxysporum was 80%. Transmission electron microscopes showed that the cell wall and membrane of F. oxysporum had shrunk and folded, vacuoles increased, and mitochondria swelled and deformed. In addition, the enzyme activity of F. oxysporum treated with MITC showed a decrease of 32.50%, 8.28% and 74.04% in catalase, peroxidase and superoxide dismutase, respectively. Transcriptome sequencing of F. oxysporum was performed and the results showed that 1478 differentially expressed genes (DEGs) were produced in response to MITC exposure. GO and KEGG analysis showed that the DEGs identified were involved in substance and energy metabolism, signal transduction, transport and catalysis. MITC disrupted cell homeostasis by influencing the expression of some key genes involved in chitin synthase and detoxification enzymes production, but F. oxysporum also protected itself by up-regulating genes involved in energy synthesis (such as upregulating acnA, CS and LSC2 in TCA). qRT-PCR data validated the reliability of transcriptome data. Our research used biochemical and genetic techniques to identify molecular lesions in the mycelia of F. oxysporum exposed to MITC, and provide valuable insights into the toxic mechanism of pathogenic fungi mediated by MITC. These techniques are also likely to be useful for rapidly screening and identifying new, environmentally-friendly soil fumigants that are efficacious against fungal pathogens.


Assuntos
Fusarium , Praguicidas , Antifúngicos , Solo , Reprodutibilidade dos Testes , Doenças das Plantas/microbiologia
9.
Sci Total Environ ; 912: 169236, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072252

RESUMO

Coal mining has important detrimental effects on the environment and human health. By the end of 2022, China mined more than 4 billion tons of raw coal, and coal mining contributed to adverse environmental impacts. The objective of this work is to evaluate the environmental impacts emanated from coal mines in different periods (construction period, production period and closing period) and to find the relationship between coal mine scale and ecological impacts. This study uses coal mines that produce 0.45 Mt/a (considered a medium sized mine), 3 Mt/a and 8 Mt/a (both classified as large mines in this study) and a 12 Mt/a extra-large coal mine. Based on the time dimension, the mine life cycle was classified into construction, production and closing period, and the life cycle assessment method was used to conduct environmental assessment. The main influencing substances and key processes were tracked. The results indicated that mining engineering and gangue are the main factors affecting the construction and production periods of coal mines. Freshwater ecotoxicity, marine ecotoxicity, and human toxicity are the main environmental effects of coal produce, and they are mostly brought up by the release of hazardous elements like copper, chromium, zinc, nickel, and copper. Furan, formaldehyde, and chromium emissions during mine closure can be effectively reduced through environmental compensation, however coal mines' environmental compensation during mine closure is minimal. The environmental impact of coal mines producing 3 Mt and 8 Mt annually is minimal. The environmental impact of 0.45 Mt/a and 3 Mt/a coal mines is more prominent in the construction period. The pollutant discharge throughout the production phase, particularly the metal leaching discharge from gangue, needs to receive more attention from the 8 Mt/a and 12 Mt/a coal mines. Additionally, the larger the scale of coal mine production, the greater the proportion of the total environmental impact in the production stage.

10.
J Hazard Mater ; 460: 132268, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619272

RESUMO

The prevention and control of root-knot nematode disease has been posing a severe challenge worldwide. Fumigant dimethyl disulfide (DMDS) has excellent biological activity against nematodes. However, DMDS displays significant differences in contact and fumigation toxicity on nematodes. The specific regulatory mechanisms of DMDS on nematodes were investigated by characterizing the ultrastructure of nematodes, examining the physiological and biochemical indicators, and conducting transcriptome high-throughput sequencing. As indicated by the results, DMDS fumigation exhibited the biological activity of against M. incognita 121 times higher than DMDS contact. DMDS contact destroyed nematode body wall cells. Besides, DMDS fumigation destroyed the structure of pseudocoelom. DMDS treatment expedited the oxygen consumption of nematode while inhibiting acetylcholinesterase activity. As indicated by the analysis of vital signaling pathways based on transcriptome, DMDS based on the contact mode penetrated directly into the nematode through the body wall and subsequently affected calcium channels in the body wall and muscle, disrupting their structure; it serves as an uncoupling agent to interfere with ATP synthase. Moreover, DMDS based on the fumigation mode entered the body through the respiratory pathway of olfactory perception-oxygen exchange and subsequently affected calcium channels in the nerve; eventually, DMDS acted on complex IV or complex I.


Assuntos
Fosforilação Oxidativa , Tylenchoidea , Animais , Acetilcolinesterase , Fumigação , Transcriptoma , Canais de Cálcio
11.
Ecotoxicol Environ Saf ; 262: 115313, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37556960

RESUMO

Dimethyl disulfide (DMDS) is a relatively new soil fumigant used in agro-industrial crop production to control soil-borne pests that damage crops and reduce yield. The emissions of DMDS after fumigation reduce soil concentrations thus reducing the risk of phytotoxicity to newly planted crops. However, the factors affecting the desorption of DMDS from soil are unclear. In our study, the desorption characteristics of DMDS from soil were measured in response to continuous ventilation. The degradation of DMDS in soil was examined by thermal incubation. The phytotoxic response of newly-planted cucumber (Cucumis sativus) seedlings to DMDS residues was measured by a sand culture experiment. The results showed DMDS desorption and degradation rates fit a first-order model; that 92% of the DMDS desorption occurred in the first hour after fumigant application; and that residue concentrations in the soil at the end of the ventilation period were unlikely to be phytotoxic to newly-planted cucumber seedlings. By the third day of ventilation, the average desorption rate (ADR) of DMDS in Wenshan soil was 4.0 and 3.6 times, respectively, faster than that in Shunyi and Suihua soils and the ADR of DMDS in soil decreased by 40.0% when the soil moisture content increased from 3% to 12% (wt/wt). Moreover, within one hour of ventilation, the ADR of DMDS in soil decreased by 20.1% when the soil bulk density increased from 1.1 to 1.3 g cm-3. The degradation of DMDS in soil, however, was mostly influenced by soil type and moisture content. A slow degradation rate resulted in a high initial desorption concentration of DMDS in soil. Our results indicated that DMDS desorption from soil in response to continuous ventilation was affected by the soil type, moisture content and bulk density. Rapid degradation of DMDS in soil will lower the risk of phytotoxic residues remaining in the soil and reduce emissions during the waiting period. Acceleration of emissions early in the waiting period by managing soil moisture content or increasing soil porosity may shorten the duration of emissions. Alternatively, soil extraction technology could be developed to recover and reduce fumigant emissions.

12.
Front Microbiol ; 14: 1225944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520348

RESUMO

Introduction: Panax notoginseng is a precious Chinese medicinal material. Soil fumigation can control soil-borne disease and overcome the continuous cropping obstacles of P. notoginseng. However, chloropicrin (CP) fumigation can kill non-target soil microorganisms and reduce microbial diversity, but the long-time impacts of CP fumigation on soil microbial are less reported. Methods: We studied the long-term effects of CP fumigation on soil microbes with high-throughput gene sequencing, and correlated the changes in the composition of microbial communities with environmental factors like soil physicochemical properties and soil enzyme activities. This study mainly focuses on the recovery characteristics of soil microbe after soil fumigation by evaluating the ecological restoration of P. notoginseng soil, its sustained control effect on plant diseases, and its promotion effect on crop growth by focusing on the CP fumigation treatment. Results: The results showed that CP fumigation significantly increased soil available phosphorus (P) to 34.6 ~ 101.6 mg/kg and electrical conductivity (EC) by 18.7% ~ 34.1%, respectively. High-throughput gene sequencing showed that soil fumigation with CP altered the relative abundance of Trichoderma, Chaetomium, Proteobacteria, and Chloroflexi in the soil while inhibiting a lot of Fusarium and Phytophthora. The inhibition rate of Phytophthora spp. was still 75.0% in the third year after fumigation. Fumigation with CP enhanced P. notoginseng's survival rate and stimulated plant growth, ensuring P. notoginseng's healthy in the growth period. The impact of fumigation on microbial community assembly and changes in microbial ecological niches were characterized using normalized stochasticity ratio (NST) and Levins' niche breadth index. Stochasticity dominated bacterial community assembly, while the fungal community was initially dominated by stochasticity and later by determinism. Fumigation with CP reduced the ecological niches of both fungi and bacteria. Conclusion: In summary, the decrease in microbial diversity and niche caused by CP fumigation could be recovered over time, and the control of soil pathogens by CP fumigation remained sustainable. Moreover, CP fumigation could overcome continuous cropping obstacles of P. notoginseng and promote the healthy growth of P. notoginseng.

13.
Int J Biol Macromol ; 244: 125132, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37268067

RESUMO

Soil fumigant has been extensively used for excellent efficacy on soil-borne diseases. However, rapid emission and insufficient effective duration typically limit its application. In this study, hybrid silica/polysaccharide hydrogel was proposed (SIL/Cu/DMDS) by emulsion-gelation method to encapsulate dimethyl disulfide (DMDS). The orthogonal study was used to optimize the preparation parameters for LC and EE of SIL/Cu/DMDS, which was 10.39 % and 71.05 %, respectively. Compared with silica, the time for 90 % of the total emissions was extended by 4.36 times. The hydrogel possessed a longer persistent duration and the degradation half-life of DMDS was 3.47 times greater than that of silica alone. Moreover, the electrostatic interaction between abundant groups of polysaccharide hydrogel bestowed DMDS with pH-triggered release behavior. Additionally, SIL/Cu/DMDS had excellent water holding and water retention capacity. The bioactivity of the hydrogel was 58.1 % higher than that of DMDS TC due to the strong synergistic effect between DMDS and the carriers (chitosan and Cu2+), and showed obvious biosafety to cucumber seeds. This study seeks to provide a potential approach to develop hybrid polysaccharide hydrogel to control soil fumigants release, reduce emission and enhance bioactivity in plant protection.


Assuntos
Quitosana , Praguicidas , Solo , Cobre , Alginatos , Hidrogéis , Fumigação/métodos , Praguicidas/análise , Água
14.
Mol Genet Genomic Med ; 11(9): e2216, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288668

RESUMO

BACKGROUND: Danon disease is characterized by the failure of lysosomal biogenesis, maturation, and function due to a deficiency of lysosomal membrane structural protein (LAMP2). METHODS: The current report describes a female patient with a sudden syncope and hypertrophic cardiomyopathy phenotype. We identified the pathogenic mutations in patients by whole-exon sequencing, followed by a series of molecular biology and genetic approaches to identify and functional analysis of the mutations. RESULTS: Suggestive findings by cardiac magnetic resonance (CMR), electrocardiogram (ECG), and laboratory examination suggested Danon disease which was confirmed by genetic testing. The patient carried a novel de novo mutation, LAMP2 c.2T>C located at the initiation codon. The quantitative polymerase chain reaction (qPCR) and Western blot (WB) analysis of peripheral blood leukocytes from the patients revealed evidence of LAMP2 haploinsufficiency. Labeling of the new initiation codon predicted by the software with green fluorescent protein followed by fluorescence microscopy and Western blotting showed that the first ATG downstream from the original initiation codon became the new translational initiation codon. The three-dimensional structure of the mutated protein predicted by alphafold2 revealed that it consisted of only six amino acids and failed to form a functional polypeptide or protein. Overexpression of the mutated LAMP2 c.2T>C showed a loss of function of the protein, as assessed by the dual-fluorescence autophagy indicator system. The mutation was confirmed to be null, AR experiments and sequencing results confirmed that 28% of the mutant X chromosome remained active. CONCLUSION: We propose possible mechanisms of mutations associated with haploinsufficiency of LAMP2: (1) The inactivation X chromosome carrying the mutation was not significantly skewed. However, it decreased in the mRNA level and the expression ratio of the mutant transcripts; (2) The identified mutation is null, and the active mutant transcript fails to translate into the normal LAMP2 proteins. The presence of haploinsufficiency in LAMP2 and the X chromosome inactivation pattern were crucial factors contributing to the early onset of Danon disease in this female patient.


Assuntos
Cardiomiopatia Hipertrófica , Doença de Depósito de Glicogênio Tipo IIb , Humanos , Feminino , Doença de Depósito de Glicogênio Tipo IIb/patologia , Códon de Iniciação , Mutação de Sentido Incorreto , Cardiomiopatia Hipertrófica/genética , Mutação , Proteína 2 de Membrana Associada ao Lisossomo/genética
15.
Pest Manag Sci ; 79(10): 3860-3870, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37256601

RESUMO

BACKGROUND: Allyl isothiocyanate (AITC) is a soil biofumigant used for controlling soil-borne pests that reduce the growth, quality, and yield of food crops. Its effectiveness against pathogens depends largely on its distribution in the soil, which is influenced mainly by the soil water content and application method. The distributions of AITC when injected with different moisture content or drip-irrigated into soils were compared. RESULTS: AITC injected at 50 g m-2 only diffused 10 cm deep in soil column with 5, 10 or 15% soil moisture content. The gas AITC peak concentration was 0.64 µg cm-3 at 5% moisture content. Diffusion was reduced when moisture content increased to more than 15%. The results of adsorption kinetics and release indicated that AITC's limited distribution was due to its low vapor pressure. AITC applied by drip irrigation at 7.5 g m-2 diffused 15 cm laterally and 30 cm deep where it reached concentrations of 0.022 µg cm-3 and 0.035 µg g-1 , respectively. Some soil-borne pathogens, nematodes and weed seeds closed to the point of AITC release were effectively controlled under drip irrigation, but efficacy decreased with increased distance. AITC applied by drip irrigation at 7.5 g m-2 and covered with PE film for 5 days provided a satisfactory efficacy against soil-borne pathogens and weeds without any phytotoxicity. CONCLUSION: Our results indicated that AITC applied by drip irrigation was more effective than injection, which will guide applicators on methods to optimize the application of AITC for efficient control of key pests and weeds. © 2023 Society of Chemical Industry.


Assuntos
Isotiocianatos , Solo , Solo/química , Isotiocianatos/farmacologia , Água , Plantas Daninhas , Irrigação Agrícola
16.
Gels ; 9(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36826328

RESUMO

The Kirigami approach is an effective way to realize controllable deformation of intelligent materials via introducing cuts into bulk materials. For materials ranging from ordinary stiff materials such as glass, ceramics, and metals to soft materials, including ordinary hydrogels and elastomers, all of them are all sensitive to the presence of cuts, which usually act as defects to deteriorate mechanical properties. Herein, we study the influence of the cuts on the mechanical properties by introducing "dispersed macro-scale cuts" into a model tough double network (DN) hydrogel (named D-cut gel), which consists of a rigid and brittle first network and a ductile stretchable second network. For comparison, DN gels with "continuous cuts" having the same number of interconnected cuts (named C-cut gel) were chosen. The fracture tests of D-cut gel and C-cut gel with different cut patterns were performed. The fracture observation revealed that crack blunting occurred at each cut tip, and a large wrinkle-like zone was formed where the wrinkles were parallel to the propagation direction of the cut. By utilizing homemade circular polarizing optical systems, we found that introducing dispersed cuts increases the rupture force by homogenizing the stress around the crack tip surrounding every cut, which reduces stress concentration in one certain cut. We believe this work reveals the fracture mechanism of tough soft materials with a kirigami cut structure, which should guide the design of advanced soft and tough materials along this line.

17.
Int J Biol Sci ; 19(2): 625-640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632458

RESUMO

Accumulating evidence shows that exosomes participate in cancer progression. However, the functions of cancer cell exosome-transmitted proteins are rarely studied. Previously, we reported that serglycin (SRGN) overexpression promotes invasion and metastasis of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the paracrine effects of exosomes from SRGN-overexpressing ESCC cells (SRGN Exo) on ESCC cell invasion and tumor angiogenesis, and used mass spectrometry to identify exosomal proteins involved. Cation-dependent mannose-6-phosphate receptor (M6PR) and ephrin type-B receptor 4 (EphB4) were pronouncedly upregulated in SRGN Exo. Upregulated exosomal M6PR mediated the pro-angiogenic effects of SRGN Exo both in vitro and in vivo, while augmented exosomal EphB4 mediated the pro-invasive effect of SRGN Exo on ESCC cells in vitro. In addition, in vitro studies showed that manipulation of M6PR expression affected the viability and migration of ESCC cells. Both M6PR and EphB4 expression levels were positively correlated with that of SRGN in the serum of patients with ESCC. High level of serum M6PR was associated with poor overall survival rates. Taken together, this study presents the first proof that exosomal M6PR and EphB4 play essential roles in tumor angiogenesis and malignancy, and that serum M6PR is a novel prognostic marker for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Exossomos , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo
18.
Sci Total Environ ; 854: 158520, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063939

RESUMO

Recent increases in soil-borne plant disease have limited further expansion of some crops produced in protected agriculture. Soil fumigation effectively minimizes the impact of soil pathogens causing many diseases. We provide the first report of the efficacy of the Chinese fungicide ethylicin as a soil fumigant against the plant pathogens such as Fusarium spp. and Phytophthora spp., and against the plant parasitic nematode Meloidogyne spp. We also examined ethylicin's impact on the physicochemical properties of soil, the soil's bacterial and fungal taxonomic composition, the plant growth of tomatoes, the enzyme activity of soil and tomato yield. Ethylicin fumigation significantly decreased the abundance of Fusarium spp. and Phytophthora spp. by 67.7 %-84.0 % and 53.8 %-81.0 %, respectively. It reduced Meloidogyne spp. by 67.2 %-83.6 %. Ethylicin significantly increased the growth of tomato plants and tomato yield by 18.3 %-42.0 %. The soil's ammonium­nitrogen concentration increased significantly in answer to ethylicin fumigation, while nitrate­nitrogen concentration and the activity of soil urease decreased significantly. High-throughput gene sequencing had been used to show that ethylicin cut down the taxonomic soil bacteria diversity and bacterial abundance, but increased the soil fungi taxonomic diversity. Some genera of microorganisms increased, such as Firmicutes, Steroidobacter and Chytridiomycota, possibly due to changes in the physicochemical properties of soil that differentially favored their survival. We conclude that ethylicin is efficacious as a soil fumigant and it would be a useful addition to the limited number of soil fumigants currently available.


Assuntos
Fusarium , Praguicidas , Solanum lycopersicum , Solo , Bactérias , Nitrogênio/farmacologia , Microbiologia do Solo
19.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500353

RESUMO

Foodborne pathogens that enter the human food chain are a significant threat worldwide to human health. Timely and cost-effective detection of them became challenging for many countries that want to improve their detection and control of foodborne illness. We summarize simple, rapid, specific, and highly effective molecular technology that is used to detect and identify foodborne pathogens, including polymerase chain reaction, isothermal amplification, loop-mediated isothermal amplification, nucleic acid sequence-based amplification, as well as gene chip and gene probe technology. The principles of their operation, the research supporting their application, and the advantages and disadvantages of each technology are summarized.


Assuntos
Microbiologia de Alimentos , Doenças Transmitidas por Alimentos , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças Transmitidas por Alimentos/diagnóstico , Reação em Cadeia da Polimerase , Análise de Sequência com Séries de Oligonucleotídeos
20.
Sci Rep ; 12(1): 18522, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323754

RESUMO

Reductions in the quality and yield of crops continuously produced in the same location for many years due to annual increases in soil-borne pathogens. Environmentally-friendly methods are needed to produce vegetables sustainably and cost effectively under protective cover. We investigated the impact of biofertilizers on cucumber growth and yield, and changes to populations of soil microorganisms in response to biofertilizer treatments applied to substrate or soil. We observed that some biofertilizers significantly increased cucumber growth and decreased soil-borne pathogens in soil and substrate. Rhizosphere microbial communities in soil and substrate responded differently to different biofertilizers, which also led to significant differences in microbial diversity and taxonomic structure at different times in the growing season. Biofertilizers increase the prospects of re-using substrate for continuously producing high-quality crops cost-effectively from the same soil each year while at the same time controlling soil-borne disease.


Assuntos
Cucumis sativus , Solo , Solo/química , Cucumis sativus/microbiologia , Microbiologia do Solo , Rizosfera , Bactérias , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA