Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Lett ; 591: 216891, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642607

RESUMO

Ovarian cancer ranks as a leading cause of mortality among gynecological malignancies, primarily due to the lack of early diagnostic tools, effective targeted therapy, and clear understanding of disease etiology. Previous studies have identified the pivotal role of Lysophosphatidic acid (LPA)-signaling in ovarian cancer pathobiology. Our earlier transcriptomic analysis identified Urothelial Carcinoma Associated-1 (UCA1) as an LPA-stimulated long non-coding RNA (lncRNA). In this study, we elucidate the tripartite interaction between LPA-signaling, UCA1, and let-7 miRNAs in ovarian cancer progression. Results show that the elevated expression of UCA1 enhances cell proliferation, invasive migration, and therapy resistance in high-grade serous ovarian carcinoma cells, whereas silencing UCA1 reverses these oncogenic phenotypes. UCA1 expression inversely correlates with survival outcomes and therapy response in ovarian cancer clinical samples, underscoring its prognostic significance. Mechanistically, UCA1 sequesters let-7 miRNAs, effectively neutralizing their tumor-suppressive functions involving key oncogenes such as Ras and c-Myc. More significantly, intratumoral delivery of UCA1-specific siRNAs inhibits the growth of cisplatin-refractory ovarian cancer xenografts, demonstrating the therapeutic potential of targeting LPAR-UCA1-let-7 axis in ovarian cancer. Thus, our results identify LPAR-UCA1-let-7 axis as a novel avenue for targeted treatment strategies.


Assuntos
Movimento Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais , Camundongos Nus , Lisofosfolipídeos/metabolismo , Camundongos , Cisplatino/farmacologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
2.
Biomolecules ; 11(8)2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34439877

RESUMO

Increased expression of GNAi2, which encodes the α-subunit of G-protein i2, has been correlated with the late-stage progression of ovarian cancer. GNAi2, also referred to as the proto-oncogene gip2, transduces signals from lysophosphatidic acid (LPA)-activated LPA-receptors to oncogenic cellular responses in ovarian cancer cells. To identify the oncogenic program activated by gip2, we carried out micro-array-based transcriptomic and bioinformatic analyses using the ovarian cancer cell-line SKOV3, in which the expression of GNAi2/gip2 was silenced by specific shRNA. A cut-off value of 5-fold change in gene expression (p < 0.05) indicated that a total of 264 genes were dependent upon gip2-expression with 136 genes coding for functional proteins. Functional annotation of the transcriptome indicated the hitherto unknown role of gip2 in stimulating the expression of oncogenic/growth-promoting genes such as KDR/VEGFR2, CCL20, and VIP. The array results were further validated in a panel of High-Grade Serous Ovarian Carcinoma (HGSOC) cell lines that included Kuramochi, OVCAR3, and OVCAR8 cells. Gene set enrichment analyses using DAVID, STRING, and Cytoscape applications indicated the potential role of the gip2-stimulated transcriptomic network involved in the upregulation of cell proliferation, adhesion, migration, cellular metabolism, and therapy resistance. The results unravel a multi-modular network in which the hub and bottleneck nodes are defined by ACKR3/CXCR7, IL6, VEGFA, CYCS, COX5B, UQCRC1, UQCRFS1, and FYN. The identification of these genes as the critical nodes in GNAi2/gip2 orchestrated onco-transcriptome establishes their role in ovarian cancer pathophysiology. In addition, these results also point to these nodes as potential targets for novel therapeutic strategies.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Proto-Oncogene Mas , Transcriptoma
3.
Oncol Lett ; 22(4): 719, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34429759

RESUMO

With the focus on defining the oncogenic network stimulated by lysophosphatidic acid (LPA) in ovarian cancer, the present study sought to interrogate the oncotranscriptome regulated by the LPA-mediated signaling pathway. LPA, LPA-receptor (LPAR) and LPAR-activated G protein 12 α-subunit, encoded by G protein subunit α 12 (GNA12), all serve an important role in ovarian cancer progression. While the general signaling mechanism regulated by LPA/LPAR/GNA12 has previously been characterized, the global transcriptomic network regulated by GNA12 in ovarian cancer pathophysiology remains largely unknown. To define the LPA/LPAR/GNA12-orchestrated oncogenic networks in ovarian cancer, transcriptomic and bioinformatical analyses were conducted using SKOV3 cells, in which the expression of GNA12 was silenced. Array analysis was performed in Agilent SurePrint G3 Human Comparative Genomic Hybridization 8×60 microarray platform. The array results were validated using Kuramochi cells. Gene and functional enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery, Search Tool for Retrieval of Interacting Genes and Cytoscape algorithms. The results indicated a paradigm in which GNA12 drove ovarian cancer progression by upregulating a pro-tumorigenic network with AKT1, VEGFA, TGFB1, BCL2L1, STAT3, insulin-like growth factor 1 and growth hormone releasing hormone as critical hub and/or bottleneck nodes. Moreover, GNA12 downregulated a growth-suppressive network involving proteasome 20S subunit (PSM) ß6, PSM α6, PSM ATPase 5, ubiquitin conjugating enzyme E2 E1, PSM non-ATPase 10, NDUFA4 mitochondrial complex-associated, NADH:ubiquinone oxidoreductase subunit B8 and anaphase promoting complex subunit 1 as hub or bottleneck nodes. In addition to providing novel insights into the LPA/LPAR/GNA12-regulated oncogenic networks in ovarian cancer, the present study identified several potential nodes in this network that could be assessed for targeted therapy.

4.
J Tradit Complement Med ; 10(3): 207-216, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32670815

RESUMO

Thymoquinone, a therapeutic phytochemical derived from Nigella sativa, has been shown to have a potent anticancer activity. However, it has been identified that the tumor microenvironment (TME) can attenuate the anticancer effects of thymoquinone (TQ) in ovarian cancer. Lysophosphatidic acid (LPA), a lipid growth factor present in high concentration in the TME of ovarian cancer, has been shown to regulate multiple oncogenic pathways in ovarian cancer. Taking account of the crucial role of LPA in the genesis and progression of ovarian cancer, the present study is focused on assessing the efficacy of TQ in inhibiting LPA-stimulated oncogenic pathways in ovarian cancer cells. Our results indicate that TQ is unable to attenuate LPA-stimulated proliferation or metabolic reprogramming in ovarian cancer cells. However, TQ potently inhibits the basal as well as LPA-stimulated migratory responses of the ovarian cancer cells. Furthermore, TQ abrogates the invasive migration of ovarian cancer cells induced by Gαi2, through which LPA stimulates cell migration. TQ also attenuates the activation of JNK, Src, and FAK, the downstream signaling nodes of LPA-LPAR-Gαi2 signaling pathway. In addition to establishing the differential effects of TQ in ovarian cancer cells, our results unravel the antitherapeutic role of LPA in the ovarian cancer TME could override the inhibitory effects of TQ on cell proliferation and metabolic reprogramming of ovarian cancer cells. More importantly, the concomitant finding that TQ could still sustain its inhibitory effect on LPA-stimulated invasive cell migration, points to its potential use as a response-specific therapeutic agent in ovarian cancer.

5.
Cancer Res ; 78(8): 1923-1934, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29386184

RESUMO

Although hypoxia has been shown to reprogram cancer cells toward glycolytic shift, the identity of extrinsic stimuli that induce metabolic reprogramming independent of hypoxia, especially in ovarian cancer, is largely unknown. In this study, we use patient-derived ovarian cancer cells and high-grade serous ovarian cancer cell lines to demonstrate that lysophosphatidic acid (LPA), a lipid growth factor and GPCR ligand whose levels are substantially increased in ovarian cancer patients, triggers glycolytic shift in ovarian cancer cells. Inhibition of the G protein α-subunit Gαi2 disrupted LPA-stimulated aerobic glycolysis. LPA stimulated a pseudohypoxic response via Rac-mediated activation of NADPH oxidase and generation of reactive oxygen species, resulting in activation of HIF1α. HIF1α in turn induced expression of glucose transporter-1 and the glycolytic enzyme hexokinase-2 (HKII). Treatment of mice bearing ovarian cancer xenografts with an HKII inhibitor, 3-bromopyruvate, attenuated tumor growth and conferred a concomitant survival advantage. These studies reveal a critical role for LPA in metabolic reprogramming of ovarian cancer cells and identify this node as a promising therapeutic target in ovarian cancer.Significance: These findings establish LPA as a potential therapeutic target in ovarian cancer, revealing its role in the activation of HIF1α-mediated metabolic reprogramming in this disease. Cancer Res; 78(8); 1923-34. ©2018 AACR.


Assuntos
Lisofosfolipídeos/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Glicólise , Xenoenxertos , Hexoquinase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Nus , NADPH Oxidases/metabolismo , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Genes Cancer ; 8(5-6): 566-576, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28740575

RESUMO

With the goal of identifying diagnostic and prognostic biomarkers in endometrial cancer, miRNA-profiling was carried out with formalin-fixed paraffin embedded (FFPE) tissue samples from 49 endometrial cancer patients. Results using an 84-cancer specific miRNA panel identified the upregulation of miR-141-3p and miR-96-5p along with a downregulation of miR-26, miR-126-3p, miR-23b, miR-195-5p, miR-374a and let-7 family of miRNAs in endometrial cancer. We validated the dysregulated expression of the identified miRNAs in a panel of endometrial cancer cell-lines. Immunohistochemical analysis of the tissue micro array derived from these patients established the functional correlation between the decreased expression of tumor suppressive miRNAs and their target oncogenes: ERBB2, EGFR, EPHA2, BAX, GNA12, GNA13, and JUN. Comparative analysis of the samples from the patients with extended progression-free survival (PFS) ( > 21 months) versus the patients with the PFS of < 21 months indicated increased expression of tumor suppressive miR-142-3p, miR-142-5p, and miR-15a-5p in samples from extended PFS patients. In addition to defining a specific set of miRNAs and their target genes as potential diagnostic biomarkers, our studies have identified tumor suppressive miR-142 cluster and miR-15a as predictors of favorable prognosis for therapy response in endometrial cancer.

7.
Oncotarget ; 7(45): 72845-72859, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27655714

RESUMO

Ovarian cancer is the most fatal gynecologic cancer with poor prognosis. Etiological factors underlying ovarian cancer genesis and progression are poorly understood. Previously, we have shown that JNK-associated Leucine zipper Protein (JLP), promotes oncogenic signaling. Investigating the role of JLP in ovarian cancer, our present study indicates that JLP is overexpressed in ovarian cancer tissue and ovarian cancer cells. Transient overexpression of JLP promotes proliferation and invasive migration of ovarian cancer cells. In addition, ectopic expression of JLP confers long-term survival and clonogenic potential to normal fallopian tube-derived epithelial cells. Coimmunoprecipitation and colocalization analyses demonstrate the in vivo interaction of JLP and JNK, which is stimulated by lysophosphatidic acid (LPA), an oncogenic lipid growth factor in ovarian cancer. We also show that LPA stimulates the translocation of JLP-JNK complex to the perinuclear region of SKOV3-ip cells. JLP-knockdown using shRNA abrogates LPA-stimulated activation of JNK as well as LPA-stimulated proliferation and invasive migration of SKOV3-ip cells. Studies using ovarian cancer xenograft mouse model indicate that the mice bearing JLP-silenced xenografts exhibits reduced tumor volume. Analysis of the xenograft tumor tissues indicate a reduction in the levels of JLP, JNK, phosphorylated-JNK, c-Jun and phosphorylated-c-Jun in JLP-silenced xenografts, thereby correlating the attenuated JLP-JNK signaling node with suppressed tumor growth. Thus, our results identify a critical role for JLP-signaling axis in ovarian cancer and provide evidence that targeting this signaling node could provide a new avenue for therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Modelos Biológicos , Neoplasias Ovarianas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Carga Tumoral
8.
Genes Cancer ; 6(7-8): 356-364, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26413218

RESUMO

Recent studies have shown that the gip2 and gep oncogenes defined by the α-subunits of Gi2 and G12 family of G proteins, namely Gαi2 and Gα12/13, stimulate oncogenic signaling pathways in cancer cells including those derived from ovarian cancer. However, the critical α-subunit involved in ovarian cancer growth and progression in vivo remains to be identified. Using SKOV3 cells in which the expressions of individual Gα-subunits were silenced, we demonstrate that the silencing of Gα12 and Gα13 drastically attenuated serum- or lysophosphatidic acid-stimulated proliferation. In contrast, the invasive migration of these cells were reduced only by the silencing of Gαi2 or Gα13. Analyses of the xenograft tumors derived from these Gα-silenced cells indicated that only the silencing of Gα13 drastically reduced xenograft tumor growth and prolonged the survival of the mice. Similar, but albeit reduced, effect was seen with the silencing of Gα12. On the contrary, the silencing of Gαi2 or Gαq failed to exert such effect. Thus, our studies establish for the first time that Gα12/13, the putative gep oncogenes, are the determinant α-subunits involved in ovarian cancer growth in vivo and their increased oncogenicity can be correlated with its ability to stimulate both proliferation and invasive migration.

9.
J Mol Signal ; 10: 3, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27096001

RESUMO

The G12 family of heterotrimeric G proteins is defined by their α-subunits, Gα12 and Gα13. These α-subunits regulate cellular homeostasis, cell migration, and oncogenesis in a context-specific manner primarily through their interactions with distinct proteins partners that include diverse effector molecules and scaffold proteins. With a focus on identifying any other novel regulatory protein(s) that can directly interact with Gα13, we subjected Gα13 to tandem affinity purification-coupled mass spectrometric analysis. Our results from such analysis indicate that Gα13 potently interacts with mammalian Ric-8A. Our mass spectrometric analysis data also indicates that Ric-8A, which was tandem affinity purified along with Gα13, is phosphorylated at Ser-436, Thr-441, Thr-443 and Tyr-435. Using a serial deletion approach, we have defined that the C-terminus of Gα13 containing the guanine-ring interaction site is essential and sufficient for its interaction with Ric-8A. Evaluation of Gα13-specific signaling pathways in SKOV3 or HeyA8 ovarian cancer cell lines indicate that Ric-8A potentiates Gα13-mediated activation of RhoA, Cdc42, and the downstream p38MAPK. We also establish that the tyrosine phosphorylation of Ric-8A, thus far unidentified, is potently stimulated by Gα13. Our results also indicate that the stimulation of tyrosine-phosphorylation of Ric-8A by Gα13 is partially sensitive to inhibitors of Src-family of kinases, namely PP2 and SI. Furthermore, we demonstrate that Gα13 promotes the translocation of Ric-8A to plasma membrane and this translocation is attenuated by the Src-inhibitors, SI1 and PP2. Thus, our results demonstrate for the first time that Gα13 stimulates the tyrosine phosphorylation of Ric-8A and Gα13-mediated tyrosine-phosphorylation plays a critical role in the translocation of Ric-8A to plasma membrane.

10.
J Cell Biol ; 204(4): 541-57, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24535825

RESUMO

Autophagy is a membrane trafficking pathway that sequesters proteins and organelles into autophagosomes. The selectivity of this pathway is determined by autophagy receptors, such as the Pichia pastoris autophagy-related protein 30 (Atg30), which controls the selective autophagy of peroxisomes (pexophagy) through the assembly of a receptor protein complex (RPC). However, how the pexophagic RPC is regulated for efficient formation of the phagophore, an isolation membrane that sequesters the peroxisome from the cytosol, is unknown. Here we describe a new, conserved acyl-CoA-binding protein, Atg37, that is an integral peroxisomal membrane protein required specifically for pexophagy at the stage of phagophore formation. Atg30 recruits Atg37 to the pexophagic RPC, where Atg37 regulates the recruitment of the scaffold protein, Atg11. Palmitoyl-CoA competes with Atg30 for Atg37 binding. The human orthologue of Atg37, acyl-CoA-binding domain containing protein 5 (ACBD5), is also peroxisomal and is required specifically for pexophagy. We suggest that Atg37/ACBD5 is a new component and positive regulator of the pexophagic RPC.


Assuntos
Autofagia , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Palmitoil Coenzima A/metabolismo , Peroxissomos/metabolismo , Fagossomos/fisiologia , Pichia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Fúngicas/genética , Células HeLa , Humanos , Proteína Huntingtina , Processamento de Imagem Assistida por Computador , Imunoprecipitação , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Palmitoil Coenzima A/genética , Peroxissomos/genética , Pichia/genética , Pichia/crescimento & desenvolvimento , Proteína Sequestossoma-1
11.
Mol Biol Cell ; 19(3): 885-98, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18094040

RESUMO

Yarrowia lipolytica Pex23p and Saccharomyces cerevisiae Pex30p, Pex31p, and Pex32p comprise a family of dysferlin domain-containing peroxins. We show that the deletion of their Pichia pastoris homologues, PEX30 and PEX31, does not affect the function or division of methanol-induced peroxisomes but results in fewer and enlarged, functional, oleate-induced peroxisomes. Synthesis of Pex30p is constitutive, whereas that of Pex31p is oleate-induced but at a much lower level relative to Pex30p. Pex30p interacts with Pex31p and is required for its stability. At steady state, both Pex30p and Pex31p exhibit a dual localization to the endoplasmic reticulum (ER) and peroxisomes. However, Pex30p is localized mostly to the ER, whereas Pex31p is predominantly on peroxisomes. Consistent with ER-to-peroxisome trafficking of these proteins, Pex30p accumulates on peroxisomes upon overexpression of Pex31p. Additionally, Pex31p colocalizes with Pex30p at the ER in pex19Delta cells and can be chased from the ER to peroxisomes in a Pex19p-dependent manner. The dysferlin domains of Pex30p and Pex31p, which are dispensable for their interaction, stability, and subcellular localization, are essential for normal peroxisome number and size. The growth environment-specific role of these peroxins, their dual localization, and the function of their dysferlin domains provide novel insights into peroxisome morphogenesis.


Assuntos
Compartimento Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ácido Oleico/farmacologia , Tamanho das Organelas/efeitos dos fármacos , Peroxissomos/metabolismo , Pichia/metabolismo , Sequência de Aminoácidos , Compartimento Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/biossíntese , Deleção de Genes , Metanol/farmacologia , Dados de Sequência Molecular , Peroxissomos/efeitos dos fármacos , Peroxissomos/ultraestrutura , Pichia/efeitos dos fármacos , Pichia/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Termodinâmica , Yarrowia/química
12.
Methods Mol Biol ; 389: 219-38, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17951646

RESUMO

With the approaching completion of the Pichia pastoris genome, a greater emphasis will have to be placed on the proteome and the protein-protein interactions between its constituents. This chapter discusses methods that have been used for the study of such interactions among both soluble and membrane-associated proteins in peroxisome biogenesis. The procedures are equally applicable to other cellular processes.


Assuntos
Proteínas Fúngicas/metabolismo , Peroxissomos/metabolismo , Pichia/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Imunoprecipitação , Peroxissomos/efeitos dos fármacos , Pichia/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
13.
Mol Cell Biol ; 26(3): 883-97, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428444

RESUMO

Growth of the yeast Pichia pastoris on methanol induces the expression of genes whose products are required for its metabolism. Three of the methanol pathway enzymes are located in an organelle called the peroxisome. As a result, both methanol pathway enzymes and proteins involved in peroxisome biogenesis (PEX proteins) are induced in response to this substrate. The most highly regulated of these genes is AOX1, which encodes alcohol oxidase, the first enzyme of the methanol pathway, and a peroxisomal enzyme. To elucidate the molecular mechanisms responsible for methanol regulation, we identify genes required for the expression of AOX1. Mutations in one gene, named MXR1 (methanol expression regulator 1), result in strains that are unable to (i) grow on the peroxisomal substrates methanol and oleic acid, (ii) induce the transcription of AOX1 and other methanol pathway and PEX genes, and (iii) form normal-appearing peroxisomes in response to methanol. MXR1 encodes a large protein with a zinc finger DNA-binding domain near its N terminus that has similarity to Saccharomyces cerevisiae Adr1p. In addition, Mxr1p is localized to the nucleus in cells grown on methanol or other gluconeogenic substrates. Finally, Mxr1p specifically binds to sequences upstream of AOX1. We conclude that Mxr1p is a transcription factor that is necessary for the activation of many genes in response to methanol. We propose that MXR1 is the P. pastoris homologue of S. cerevisiae ADR1 but that it has gained new functions and lost others through evolution as a result of changes in the spectrum of genes that it controls.


Assuntos
Oxirredutases do Álcool/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Metanol/metabolismo , Peroxissomos/enzimologia , Pichia/crescimento & desenvolvimento , Transativadores/metabolismo , Sequência de Aminoácidos , Núcleo Celular/química , Núcleo Celular/metabolismo , Clonagem Molecular , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Genes Fúngicos , Dados de Sequência Molecular , Ácido Oleico/metabolismo , Peroxissomos/genética , Peroxissomos/ultraestrutura , Pichia/genética , Pichia/metabolismo , Regiões Promotoras Genéticas/genética , Transativadores/análise , Transativadores/genética
14.
Curr Opin Cell Biol ; 17(4): 376-83, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15978793

RESUMO

Like other subcellular organelles, peroxisomes divide and segregate to daughter cells during cell division, but this organelle can also proliferate or be degraded in response to environmental cues. Although the mechanisms and genes involved in these processes are still under active investigation, an important player in peroxisome proliferation is a dynamin-related protein (DRP) that is recruited to the organelle membrane by a DRP receptor. Related DRPs also function in the division of mitochondria and chloroplasts. Many other proteins and signals regulate peroxisome division and proliferation, but their modes of action are still being studied.


Assuntos
Peroxissomos/metabolismo , Animais , Transporte Biológico , Citoesqueleto/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica
15.
J Cell Physiol ; 198(2): 188-96, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14603521

RESUMO

The 90-kDa heat shock protein (Hsp90) is the most abundant molecular chaperone in eukaryotic cells. Hsp90 plays a critical role in regulating signal transduction pathways that control cell proliferation since its chaperone function is restricted to a subset of proteins including some signal molecules. Improper function of these proteins can be induced by an anti-tumor agent geldanamycin (GA) which is the specific inhibitor of Hsp90. In this study, it was demonstrated that GA interferes with IL-2-stimulated proliferation of murine CTLL-2 cells. As to the signaling mechanisms underlying this inhibitory effect, we discovered GA disrupts the IL-2-stimulated activation and phosphorylation of the transcription factor Stat5, indicating the proper function of Hsp90 is indispensable for Stat5 activation. This conclusion is validated by the observation that Hsp90 interacts with Stat5 in the immunoprecipitation assay and GA interrupts their interaction. Furthermore, by constructing deletion mutants, we identified the c-terminal half of Stat5 coiled-coil region is responsible for binding with Hsp90.


Assuntos
Proteínas de Ligação a DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Linfócitos/efeitos dos fármacos , Proteínas do Leite , Quinonas/farmacologia , Transativadores/efeitos dos fármacos , Animais , Benzoquinonas , Western Blotting , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Interleucina-2/farmacologia , Lactamas Macrocíclicas , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/fisiologia , Linfócitos/metabolismo , Masculino , Camundongos , Mutação , Testes de Precipitina , Regiões Promotoras Genéticas , Fator de Transcrição STAT5 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/metabolismo , Transfecção
16.
J Cell Biochem ; 88(6): 1120-8, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12647295

RESUMO

Telomerase is an important ribonucleoprotein enzyme involved in cellular proliferation and senescence. Activation of telomerase has been detected in a vast majority of human cancer cells. In this article, we demonstrated that Interleukin-2 (IL-2) which is the pivotal cytokine in the immune system could stimulate the activity of telomerase in the cultured BA/F3beta cells. It was also found that the level of IL-2-induced telomerase activity was decreased by the treatment with chemical oxidant in vitro. Since IL-2 stimulation produces a oxidative shift of the intracellular environment, the activation and maintenance of telomerase in this oxidative circumstance requires particular protection. Here we proved the redox factor-1 (Ref-1) protein was involved in this process. The addition of GST-Ref-1 protein increased the level of IL-2-induced telomerase activity in the TRAP assay, while elimination of the endogenous Ref-1 protein by immunodepletion decreased it. Consistent with these in vitro results, IL-2-induced telomerase activity could be enhanced by transient overexpression of Ref-1 protein in BA/F3beta cells. Taken together, these findings proved that Ref-1 protein benefits the activation of telomerase activity in the oxidative microenvironment of the BA/F3beta cells stimulated by IL-2.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/farmacologia , Interleucina-2/farmacologia , Telomerase/metabolismo , Animais , Anticorpos/imunologia , Células Cultivadas , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/biossíntese , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/imunologia , Sinergismo Farmacológico , Immunoblotting , Interleucina-2/antagonistas & inibidores , Camundongos , Oxirredução/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Telomerase/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-12110916

RESUMO

Redox factor-1 (Ref-1) is a bifunctional protein playing an important role in both cellular redox regulation and DNA apurinic/apyrimidinic sites' repair. To find Ref-1interacting proteins (Rips), a yeast two-hybrid screening was performed by using Ref-1 redox domain as the 'bait', and five positive clones were obtained. One of them (Rip3) was identified to be the ubiquitin-conjugating enzyme Ubc9. Simultaneous overexpression of Ubc9 in Hela cells dramatically inhibited the enhancement of AP-1 reporter gene by Ref-1. Western blot indicated that the protein level of Ref-1 dropped down as the result of simultaneous overexpression of Ubc9. These results suggest that Ubc9 is involved in the protein degradation of Ref-1, resulting in the downregulation of Ref-1 physiological function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA