Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 167(3): 410-426, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37753942

RESUMO

Microglia play a crucial role in regulating neuroinflammation in the pathogenesis of neonatal hypoxic-ischemic brain damage (HIBD). Pyroptosis, an inflammatory form of programmed cell death, has been implicated in HIBD; however, its underlying mechanism remains unclear. We previously demonstrated that high-mobility group box 1 protein (HMGB1) mediates neuroinflammation and microglial damage in HIBD. In this study, we aimed to investigate the association between HMGB1 and microglial pyroptosis and elucidate the mechanism involved in rats with HIBD (both sexes were included) and in BV2 microglia subjected to oxygen-glucose deprivation. Our results showed that HMGB1 inhibition by glycyrrhizin (20 mg/kg) reduced the expression of microglial pyroptosis-related proteins, including caspase-1, the N-terminus fragment of gasdermin D (N-GSDMD), and pyroptosis-related inflammatory factors, such as interleukin (IL) -1ß and IL-18. Moreover, HMGB1 inhibition resulted in reduced neuronal damage in the hippocampus 72 h after HIBD and ultimately improved neurobehavior during adulthood, as evidenced by reduced escape latency and path length, as well as increased time and distance spent in the target quadrant during the Morris water maze test. These results revealed that HIBD-induced pyroptosis is mediated by HMGB1/receptor for advanced glycation end products (RAGE) signaling (inhibition by FPS-ZM1, 1 mg/kg) and the activation of cathespin B (cat B). Notably, cat B inhibition by CA074-Me (5 mg/kg) also reduced hippocampal neuronal damage by suppressing microglial pyroptosis, thereby ameliorating learning and memory impairments caused by HIBD. Lastly, we demonstrated that microglial pyroptosis may contribute to neuronal damage through the HMGB1/RAGE/cat B signaling pathway in vitro. In conclusion, these results suggest that HMGB1/RAGE/cat B inhibitors can alleviate hippocampal injury by regulating microglial pyroptosis and caspase activation in HIBD, thereby reducing the release of proinflammatory mediators that destroy hippocampal neurons and induce spatial memory impairments.

2.
Diagnostics (Basel) ; 13(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685269

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a progressive ocular ailment causing age-associated vision deterioration, characterized by dysregulated immune cell activity. Notably, follicular helper T (Tfh) cells have emerged as pivotal contributors to AMD pathogenesis. Nonetheless, investigations into Tfh-associated gene biomarkers for this disorder remain limited. METHODS: Utilizing gene expression data pertinent to AMD procured from the Gene Expression Omnibus (GEO) repository, we employed the "DESeq2" R software package to standardize and preprocess expression levels. Concurrently, CIBERSORT analysis was utilized to compute the infiltration proportions of 22 distinct immune cell types. Subsequent to weighted gene correlation network analysis (WGCNA), coupled with differential expression scrutiny, we pinpointed genes intricately linked with Tfh cells. These potential genes underwent further screening using the MCODE function within Cytoscape software. Ultimately, a judicious selection of pivotal genes from these identified clusters was executed through the LASSO algorithm. Subsequently, a diagnostic nomogram was devised based on these selected genes. RESULTS: Evident Tfh cell disparities between AMD and control cohorts were observed. Our amalgamated analysis, amalgamating differential expression data with co-expression patterns, unveiled six genes closely associated with Tfh cells in AMD. Subsequent employment of the LASSO algo-rithm facilitated identification of the most pertinent genes conducive to predictive modeling. From these, GABRB3, MFF, and PROX1 were elected as prospective diagnostic biomarkers for AMD. CONCLUSIONS: This investigation discerned three novel biomarker genes, linked to inflammatory mechanisms and pivotal in diagnosing AMD. Further exploration of these genes holds potential to foster novel therapeutic modalities and augment comprehension of AMD's disease trajectory.

3.
J Neurosci Methods ; 397: 109936, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524247

RESUMO

Closed-loop auditory stimulation is one of the well-known and emerging sensory stimulation techniques, which achieves the purpose of sleep regulation by driving the EEG slow oscillation (SO, <1 Hz) through auditory stimulation. The main challenge is to accurately identify the stimulation timing and provide feedback in real-time, which has high requirements on the response time and recognition accuracy of the closed-loop auditory stimulation system. To reduce the impact of systematic errors on the regulation results, most traditional closed-loop auditory stimulation systems try to identify a single feature to determine the timing of stimulus delivery and reduce the system feedback delay by simplifying the calculation. Unlike existing closed-loop regulation systems that identify specific brain features, this paper proposes a closed-loop auditory stimulation sleep regulation system deploying machine learning. The process is: through online sleep real-time automatic staging, tracking the sleep stage to provide feedback quickly, and continuously offering external auditory stimulation at a specific SO phase. This paper uses this system to conduct sleep auditory stimulation regulation experiments on ten subjects. The experimental results show that the sleep closed-loop regulation system proposed in this paper can achieve consistency (effective for almost all subjects in the experiment) and immediate (taking effect immediately after stimulation) modulation effects on SOs. More importantly, the proposed method is superior to existing advanced methods. Therefore, the system designed in this paper has great potential to be more reliable and flexible in sleep regulation.


Assuntos
Eletroencefalografia , Sono , Humanos , Sono/fisiologia , Encéfalo/fisiologia , Estimulação Acústica/métodos , Fases do Sono/fisiologia
5.
Eur J Pharmacol ; 944: 175584, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781043

RESUMO

Apigenin is a natural flavonoid which is widely found in vegetables and fruits. However, the mechanism of apigenin in oxidative stress-induced myocardial injury has not been fully elucidated. We established an isoproterenol (Iso)-induced myocardial injury mouse model and a hypoxia/reoxygenation (H/R)-induced H9c2 cell injury model, followed by pretreatment with apigenin to explore its protective effects. Apigenin can significantly alleviate isoproterenol-induced oxidative stress, cell apoptosis and myocardial remodeling in vivo. Apigenin pretreatment can also significantly improve cardiomyocyte morphology, decrease H/R induced oxidative stress, and attenuate cell apoptosis and inflammation in vitro. Further mechanism study revealed that apigenin treatment reversed isoprenaline and H/R-induced decrease of Sirtuin1 (SIRT1). Molecular docking results proved that apigenin can form hydrogen bond with 230 Glu, a key site of SIRT1 activation, indicating that apigenin is an agonist of SIRT1. Moreover, SIRT1 knockdown by siRNA significantly reversed the protective effect of apigenin in H/R-induced myocardial injury. In conclusion, apigenin protects cardiomyocyte function from oxidative stress-induced myocardial injury by modulating SIRT1 signaling pathway, which provides a new potential therapeutic natural compound for the clinical treatment of cardiovascular diseases.


Assuntos
Apigenina , Sirtuína 1 , Animais , Camundongos , Apigenina/farmacologia , Apoptose , Hipóxia/metabolismo , Isoproterenol/farmacologia , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Estresse Oxidativo , Transdução de Sinais , Sirtuína 1/metabolismo
6.
J Pharm Pharmacol ; 75(2): 253-263, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36179123

RESUMO

OBJECTIVES: To investigate the function and regulatory mechanisms of delphinidin in the treatment of hepatocellular carcinoma. METHODS: HepG2 and HuH-7 cells were treated with different concentrations of delphinidin. Cell viability was analysed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell autophagy and autophagic flux were analysed by LC3b-green fluorescent protein (GFP)-Adv and LC3b-GFP-monomeric red fluorescent protein-Adv transfected HepG2 and HuH-7 cells, respectively. Cell apoptosis was analysed by Hoechst33342 staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and DNA laddering. Cell autophagy, apoptosis and survival related protein expressions were detected by Western blotting. KEY FINDINGS: After treatment with different concentrations of delphinidin, the cell survival rate was significantly decreased. Delphinidin could block the autophagic flux, resulting in a significant increase in autophagosomes, and led to an increase in cell apoptosis. The combined application of delphinidin and cisplatin could promote the antitumour effect and reduce the dose of cisplatin in tumour cells. Further mechanism studies reveal that delphinidin could inhibit the multidrug resistance gene 1 (MDR1) and the tumour-promoting transcription cofactor DEAD-box helicase 17 (DDX17) expression in tumour cells. Overexpression of DDX17 could reverse delphinidin's antitumor function in tumour cells. CONCLUSIONS: Delphinidin has a strong anti-tumour effect by inducing tumour cell autophagic flux blockage and apoptosis by inhibiting of both MDR1 and DDX17 expression.


Assuntos
Cisplatino , Neoplasias Hepáticas , Humanos , Cisplatino/farmacologia , Genes MDR , Apoptose , Autofagia , Linhagem Celular Tumoral , RNA Helicases DEAD-box/farmacologia
7.
Signal Transduct Target Ther ; 7(1): 391, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36522308

RESUMO

Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.


Assuntos
Promoção da Saúde , Doenças Neurodegenerativas , Humanos , Idoso , Envelhecimento/metabolismo , Senescência Celular/genética , Instabilidade Genômica , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia
8.
Front Oncol ; 12: 943032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992805

RESUMO

DEAD-box (DDX)5 and DDX17, which belong to the DEAD-box RNA helicase family, are nuclear and cytoplasmic shuttle proteins. These proteins are expressed in most tissues and cells and participate in the regulation of normal physiological functions; their abnormal expression is closely related to tumorigenesis and tumor progression. DDX5/DDX17 participate in almost all processes of RNA metabolism, such as the alternative splicing of mRNA, biogenesis of microRNAs (miRNAs) and ribosomes, degradation of mRNA, interaction with long noncoding RNAs (lncRNAs) and coregulation of transcriptional activity. Moreover, different posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, and sumoylation, endow DDX5/DDX17 with different functions in tumorigenesis and tumor progression. Indeed, DDX5 and DDX17 also interact with multiple key tumor-promoting molecules and participate in tumorigenesis and tumor progression signaling pathways. When DDX5/DDX17 expression or their posttranslational modification is dysregulated, the normal cellular signaling network collapses, leading to many pathological states, including tumorigenesis and tumor development. This review mainly discusses the molecular structure features and biological functions of DDX5/DDX17 and their effects on tumorigenesis and tumor progression, as well as their potential clinical application for tumor treatment.

9.
Oxid Med Cell Longev ; 2022: 5184135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186188

RESUMO

OBJECTIVE: To investigate the protective effects and regulatory mechanism of miR-488-3p on doxorubicin-induced cardiotoxicity. METHODS: The C57BL/6 mice and primary cardiomyocytes were used to construct doxorubicin-induced cardiomyocyte injury models in vivo and in vitro. The levels of miR-488-3p and its downstream target genes were analyzed by quantitative real-time PCR. Mouse cardiac function, cell survival, cellular injury-related proteins, and the apoptosis level of cardiomyocytes were analyzed by echocardiography, MTT analysis, Western blotting, and DNA laddering separately. RESULTS: Cardiomyocyte injury caused by a variety of stimuli can lead to the reduction of miR-488-3p level, especially when stimulated with doxorubicin. Doxorubicin led to significant decrease in cardiac function, cell autophagic flux blockage, and apoptosis in vivo and in vitro. The expression of miR-488-3p's target gene, CyclinG1, increased remarkably in the doxorubicin-treated neonatal mouse cardiomyocytes. Overexpression of miR-488-3p inhibited CyclinG1 expression, increased cardiomyocyte viability, and attenuated doxorubicin-induced cardiomyocyte autophagic flux blockage and apoptosis. CONCLUSIONS: miR-488-3p is one of the important protective miRNAs in doxorubicin-induced cardiotoxicity by inhibiting the expression of CyclinG1, which provides insight into the possible clinical application of miR-488-3p/CyclinG1 as therapeutic targets in doxorubicin-induced cardiovascular diseases.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Ciclina G1/antagonistas & inibidores , Doxorrubicina/efeitos adversos , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Humanos , Masculino , Camundongos , Ratos
10.
Artigo em Inglês | MEDLINE | ID: mdl-34917156

RESUMO

OBJECTIVE: To investigate the protective effects and regulatory mechanisms of ferulic acid on oxidative stress-induced cardiomyocyte injury. METHODS: We established a cardiomyocyte oxidative stress cell model by H2O2 treatment and a mouse heart injury model by isoprenaline infusion of male C57BL/6 mice. Ferulic acid was applied to treat oxidative stress-induced cardiomyocyte injury. DHE staining was used to detect ROS production. DNA fragmentation, TUNEL assay, and cleaved caspase-3 were used to analyze cell apoptosis. Real-time PCR and Western blotting were used to analyze miRNA and protein levels to investigate the regulatory mechanisms of ferulic acid on oxidative stress-induced cardiomyocyte injury. RESULTS: Ferulic acid pretreatment significantly inhibited H2O2- and isoprenaline-induced oxidative stress and cell apoptosis by promoting miR-499-5p expression and inhibiting p21 expression. MiR-499-5p inhibition reversed the protective effects of ferulic acid. Further study found that ferulic acid could also attenuate isoprenaline-induced mouse heart fibrosis and cell apoptosis by reducing oxidative stress, inflammation, and apoptosis in vivo. CONCLUSIONS: We proved that ferulic acid protects cardiomyocytes from oxidative stress-induced injury by regulating the miR-499-5p/p21signaling pathway, which provides insight into the clinical application of ferulic acid in the treatment of cardiovascular diseases.

11.
Oxid Med Cell Longev ; 2021: 9570325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777324

RESUMO

With research progress on longevity, we have gradually recognized that cardiac aging causes changes in heart structure and function, including progressive myocardial remodeling, left ventricular hypertrophy, and decreases in systolic and diastolic function. Elucidating the regulatory mechanisms of cardiac aging is a great challenge for biologists and physicians worldwide. In this review, we discuss several key molecular mechanisms of cardiac aging and possible prevention and treatment methods developed in recent years. Insights into the process and mechanism of cardiac aging are necessary to protect against age-related diseases, extend lifespan, and reduce the increasing burden of cardiovascular disease in elderly individuals. We believe that research on cardiac aging is entering a new era of unique significance for the progress of clinical medicine and social welfare.


Assuntos
Envelhecimento/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Idoso , Envelhecimento/patologia , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miocárdio/patologia
12.
Biomed Res Int ; 2020: 5107193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190669

RESUMO

The usage of doxorubicin is hampered by its life-threatening cardiotoxicity in clinical practice. Dexrazoxane is the only cardioprotective medicine approved by the FDA for preventing doxorubicin-induced cardiac toxicity. Nevertheless, the mechanism of dexrazoxane is incompletely understood. The aim of our study is to investigate the possible molecular mechanism of dexrazoxane against doxorubicin-induced cardiotoxicity. We established a doxorubicin-induced mouse and cardiomyocyte injury model. Male C57BL/6J mice were randomly distributed into a control group (Con), a doxorubicin treatment group (DOX), a doxorubicin plus dexrazoxane treatment group (DOX+DEX), and a dexrazoxane treatment group (DEX). Echocardiography and histology analyses were performed to evaluate heart function and structure. DNA laddering, qRT-PCR, and Western blot were performed on DOX-treated cardiomyocytes with/without DEX treatment in vitro. Cardiomyocytes were then transfected with miR-17-5p mimics or inhibitors in order to analyze its downstream target. Our results demonstrated that dexrazoxane has a potent effect on preventing cardiac injury induced by doxorubicin in vivo and in vitro by reducing cardiomyocyte apoptosis. MicroRNA plays an important role in cardiovascular diseases. Our data revealed that dexrazoxane could upregulate the expression of miR-17-5p, which plays a cytoprotective role in response to hypoxia by regulating cell apoptosis. Furthermore, the miRNA and protein analysis revealed that miR-17-5p significantly attenuated phosphatase and tensin homolog (PTEN) expression in cardiomyocytes exposed to doxorubicin. Taken together, dexrazoxane might exert a cardioprotective effect against doxorubicin-induced cardiomyocyte apoptosis by regulating the expression of miR-17-5p/PTEN cascade.


Assuntos
Apoptose/efeitos dos fármacos , Dexrazoxano/farmacologia , Doxorrubicina/efeitos adversos , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/patologia , Sobrevivência Celular/efeitos dos fármacos , Dexrazoxano/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , PTEN Fosfo-Hidrolase/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 523(1): 140-146, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31837803

RESUMO

Doxorubicin, as a first line chemotherapeutic agent, its usage is limited owing to cardiotoxicity. Necroptosis is a new form of programmed cell death, and recent investigations indicated that necroptosis is vitally involved in serious cardiac pathological conditions. Dexrazoxane is the only cardiac protective drug approved by FDA for anthracycline. We aimed to explore whether and how dexrazoxane regulates doxorubicin-induced cardiomyocyte necroptosis. First, doxorubicin could cause heart failure and reduce cardiomyocyte viability by promoting cell apoptosis and necroptosis in vivo and in vitro. Second, necroptosis plays an important role in doxorubicin induced cardiomyocyte injury, which could be inhibited by Nec-1. Third, dexrazoxane increased cell viability and protect heart function by decreasing both cardiomyocyte apoptosis and necroptosis after doxorubicin treatment. Forth, dexrazoxane attenuated doxorubicin-induced inflammation and necroptosis by the inhibition of p38MAPK/NF-κB pathways. These results indicated that dexrazoxane ameliorates cardiotoxicity and protects heart function by attenuating both apoptosis and necroptosis in doxorubicin induced cardiomyocyte injury.


Assuntos
Apoptose/efeitos dos fármacos , Dexrazoxano/farmacologia , Doxorrubicina/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Animais , Células Cultivadas , Dexrazoxano/administração & dosagem , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade
14.
Oxid Med Cell Longev ; 2019: 8768164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31612078

RESUMO

Chronic hypertension, valvular heart disease, and heart infarction cause cardiac remodeling and potentially lead to a series of pathological and structural changes in the left ventricular myocardium and a progressive decrease in heart function. Angiotensin II (AngII) plays a key role in the onset and development of cardiac remodeling. Many microRNAs (miRNAs), including miR-154-5p, may be involved in the development of cardiac remolding, but the underlying molecular mechanisms remain unclear. We aimed to characterize the function of miR-154-5p and reveal its mechanisms in cardiac remodeling induced by AngII. First, angiotensin II led to concurrent increases in miR-154-5p expression and cardiac remodeling in adult C57BL/6J mice. Second, overexpression of miR-154-5p to a level similar to that induced by AngII was sufficient to trigger cardiomyocyte hypertrophy and apoptosis, which is associated with profound activation of oxidative stress and inflammation. Treatment with a miR-154-5p inhibitor noticeably reversed these changes. Third, miR-154-5p directly inhibited arylsulfatase B (Arsb) expression by interacting with its 3'-UTR and promoted cardiomyocyte hypertrophy and apoptosis. Lastly, the angiotensin type 1 receptor blocker telmisartan attenuated AngII-induced cardiac hypertrophy, apoptosis, and fibrosis by blocking the increase in miR-154-5p expression. Moreover, upon miR-154-5p overexpression in isolated cardiomyocytes, the protective effect of telmisartan was partially abolished. Based on these results, increased cardiac miR-154-5p expression is both necessary and sufficient for AngII-induced cardiomyocyte hypertrophy and apoptosis, suggesting that the upregulation of miR-154-5p may be a crucial pathological factor and a potential therapeutic target for cardiac remodeling.


Assuntos
Angiotensina II/farmacologia , Cardiomegalia/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA