Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169141, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072258

RESUMO

Biomass-derived carbon materials have the characteristics of a wide range of precursor sources, controllable carbon nano-dimension, large specific surface area and abundant heteroatoms doping. At present, biomass-derived carbon materials have been widely used in electrochemical energy storage devices, especially the research and development of biomass-derived carbon materials for supercapacitors has become mature and in-depth. Therefore, it is of importance to summarize the advanced technologies and strategies for optimizing biomass-derived carbon materials for supercapacitors, which will effectively promote the further development of high-performance supercapacitors. In this review, the recent research progress of biomass-derived carbon materials is provided in detail, including the selection of biomass precursors, the design of carbon nano-dimension and the theory of heteroatom doping. Besides, the preparation methods of biomass-derived carbon materials and the related processes of optimizing the electrochemical performance are also summarized. This review ends with the perspectives for future research directions and challenges in the field of biomass-derived carbon materials for electrochemical applications. This review aims to provide helpful reference information for the nano-dimensional design and electrochemical performance optimization of biomass-derived carbon materials for the practical application of supercapacitors.

2.
Phys Chem Chem Phys ; 25(8): 6362-6368, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779323

RESUMO

Batteries have become a ubiquitous daily necessity, which are popularly applied to mobile phones and electric vehicles according to their size. Improving the battery cycle life and storage is important, but unexpected discharge products still restrict the upper limit of batter performance such as Li2O2, LiO2, and Li2S. In this study, we calculated electrons and phonons presenting the basic energy states in crystal using the first-principles calculations. The Li2O2 and Li2S are almost insulating due to the wide bandgap from their electronic structure, and doped-active p-orbital may be one of the pathways to improve crystal conduction due to the tendency of the density of states. The LiO2 is metallic, and the electronic structure and phonons show that the discharge products have an ionic feature. In addition, the ionic crystal can produce a larger DC permittivity because it possesses macroscopic polarisation. For Li2O2 and Li2S, the Raman peak of the O-O bonding is strong, while the Raman peak of the S-ion is very weak. The enhanced Raman peak of the S-ion presents a possibility to prevent the shuttle effect in Li-S batteries.

3.
J Colloid Interface Sci ; 630(Pt B): 751-761, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36347101

RESUMO

Spinel iron cobaltite (FeCo2O4) with high theoretical capacity is a promising positive electrode material for building high-performance supercapacitors. However, its inherent poor conductivity and deficient electrochemical active sites hinder the improvement of its electrochemical kinetics behavior. Herein, phosphate ions modified FeCo2O4 is obtained in the presence of oxygen vacancies (P-FeCo2O4-x) by a simple metal organic framework gel-derived strategy. Phosphate ions added on the surface of P-FeCo2O4-x greatly enhances its surface activity, thus prompting the faster charge storage kinetics of the electrode material. Due to its ample electrochemical active sites and rapid ion diffusion and electron mobility, the optimized P-FeCo2O4-x electrode delivers a superior specific capacity of 1568.8 F g-1 (784.4 C g-1) at a current density of 1 A/g and has an excellent cycling stability with 93.3 % initial capacity retention ratio after 5000 cycles. More impressively, the assembled asymmetric supercapacitor consisting of P-FeCo2O4-x and activated carbon which act as positive and negative electrode materials, respectively displays a favorable energy density of 60.2 Wh kg-1 at a power density of 800 W kg-1 and has a long cycling lifespan. These results demonstrate the potential importance of modifying the surface of spinel cobaltite with phosphate ions and incorporating oxygen defects in it as a facile strategy for enhancing the electrochemical kinetics of electrode materials.

4.
Inorg Chem ; 60(19): 14786-14792, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34543021

RESUMO

Rational design of transition-metal phosphide (TMPs)-based electrocatalysts can effectively promote oxygen evolution reaction (OER). Herein, the novel efficient Ni2P/Fe3O4 porous nanosheets arrays supported on Ni foam (Ni2P/Fe3O4/NF) as alkaline OER catalysts were synthesized using structural and interfacial engineering. The three-dimensional (3D) porous hierarchical structure of Ni2P/Fe3O4/NF provides abundant active sites for OER and facilitates the electrolyte diffusion of ions and O2 liberation. Furthermore, the strong interfacial coupling and synergistic effect between Ni2P and Fe3O4 modify the electronic structure, resulting in the enhanced intrinsic activity. Consequently, the optimized Ni2P/Fe3O4/NF exhibits excellent OER performance with low overpotentials of 213 and 240 mV at 60 and 100 mA cm-2 in 1.0 M KOH, respectively, better than the RuO2/NF and most Ni/Fe-based OER catalysts. Impressively, it can maintain its catalytic activity for at least 20 h at 60 mA cm-2. In addition, the relationship between the structure and performance is fully elucidated by the experimental characterizations, indicating that the metal oxyhydroxides in situ generated on the surface of catalysts are responsible for the high OER activity.

5.
J Colloid Interface Sci ; 604: 719-726, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34293530

RESUMO

Herein, we demonstrate a direct growth of amorphous metal oxyhydroxide (AMO) attached on CeO2 by a galvanic replacement mechanism as advanced oxygen evolution reaction (OER) catalyst. In this unique structure, the CeO2 substrate not only offers high specific surface area for the formation of AMO, but also provides high conductivity, guaranteeing the promoted electron transfer for the catalytic reaction. In addition, the AMO on the surface of the CeO2 exposes abundant active sites for the OER. Benefiting from the above advantages, the as-prepared AMO@CeO2 supported on nickel foam (AMO@CeO2/NF) exhibits excellent OER performance with low overpotential of 261 mV at 10 mA cm-2, high turnover frequency of 0.07 s-1 at 20 mA cm-2 and superior stability in 1.0 M KOH.

6.
Adv Mater ; 32(52): e2004632, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33185899

RESUMO

High volumetric performance is a challenging issue for carbon-based electrical double-layer capacitors (EDLCs). Herein, collapsed N,S dual-doped carbon nanocages (cNS-CNC) are constructed by simple capillary compression, which eliminates the surplus meso- and macropores, leading to a much increased density only at the slight expense of specific surface area. The N,S dual-doping induces strong polarity of the carbon surface, and thus much improves the wettability and charge transfer. The synergism of the high density, large ion-accessible surface area, and fast charge transfer leads to state-of-the-art volumetric performance under the premise of high rate capability. At a current density of 50 A g-1 , the optimized cNS-CNC delivers a high volumetric capacitance of 243 and 199 F cm-3 in KOH and EMIMBF4 electrolyte, with high energy density of 7.9 and 93.4 Wh L-1 , respectively. A top-level stack volumetric energy density of 75.3 Wh L-1 (at power density of 0.7 kW L-1 ) and a maximal stack volumetric power density of 112 kW L-1 (at energy density of 18.8 Wh L-1 ) are achieved in EMIMBF4 , comparable to the lead-acid battery in energy density but better in power density with 2-3 orders. This study demonstrates an efficient strategy to design carbon-based materials for high-volumetric-performance EDLCs with wide practical applications.

7.
Fish Shellfish Immunol ; 97: 100-107, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31756453

RESUMO

A 56-day feeding trial was done to investigate the interactive effects of cholesterol (CHO) and phospholipids (PL) on the growth performance, immune response, expression of immune-related genes, and resistance against Vibrio alginolyticus of freshwater cultured white shrimp (Litopenaeus vannamei). A 3 × 3 experimental design was conducted with nine experimental diets containing three levels of CHO (0, 0.2%, and 0.4%) and three levels of PL (0, 2%, and 4%). The results indicated that the growth performance significantly (P < 0.05) increased with the increase in dietary CHO levels. Interactive effects between dietary CHO and PL on the growth parameters were not observed. Superoxide dismutase (SOD) and lysozyme activities were also significantly affected by dietary CHO levels. Furthermore, the interaction between these two additives was only detected in SOD activity. Shrimp fed experimental diet with CHO and PL supplementation showed better tolerance against Vibrio alginolyticus compared to the control, interactive effects (P < 0.05) were also detected on these two factors. The expression of immune deficiency (IMD) and lysozyme mRNA was up-regulated in shrimp fed diets with CHO and PL. The expression level of Toll-like receptor mRNA directly reflected the dietary CHO levels, which was not affected by dietary PL. The interaction between dietary CHO and PL was shown as the significant factor (P < 0.05) both in the expression of IMD and lysozyme mRNA, which indicated that different dietary levels of CHO and PL could strongly affect expression levels of some immune-relevant genes of the juvenile freshwater cultured L. vannamei.


Assuntos
Colesterol na Dieta/administração & dosagem , Imunidade Inata , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Fosfolipídeos/administração & dosagem , Vibrioses/veterinária , Fatores Etários , Ração Animal , Animais , Aquicultura , Suplementos Nutricionais , Água Doce , Expressão Gênica/imunologia , Penaeidae/genética , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrio alginolyticus
8.
Nanotechnology ; 28(6): 065402, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28050971

RESUMO

In this work, γ-MnS/reduced graphene oxide composites (γ-MnS/rGO) were prepared using a facile one-pot hydrothermal method. As an electrode material for supercapacitors, the γ-MnS/rGO-60 composite obtained under dosages of graphene oxide  was 60 mg and exhibited an enhanced specific capacitance of 547.6 F g-1 at a current density of 1 A g-1, and outstanding rate capability (65% capacitance retention at 20 A g-1), with superior cycling stability and electrochemical reversibility. An asymmetric supercapacitor assembled from γ-MnS/rGO-60 composite and rGO (γ-MnS/rGO-60//rGO) showed a voltage window of 0-1.6 V and delivered a high energy density of 23.1 W h kg-1 at a power density of 798.8 W kg-1, and 15.9 W h kg-1 at 4.5 kW kg-1. Moreover, two such 1.0 × 1.0 cm2 devices connected together in series easily light up a group of LED lights, showing its potential practical application as an attractive energy storage device.

9.
ACS Appl Mater Interfaces ; 8(37): 24525-35, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27551941

RESUMO

In this paper, a hierarchical NiCo2S4@polypyrrole core-shell heterostructure nanotube array on Ni foam (NiCo2S4@PPy/NF) was successfully developed as a bind-free electrode for supercapacitors. NiCo2S4@PPy-50/NF obtained under 50 s PPy electrodeposition shows a low charge-transfer resistance (0.31 Ω) and a high area specific capacitance of 9.781 F/cm(2) at a current density of 5 mA/cm(2), which is two times higher than that of pristine NiCo2S4/NF (4.255 F/cm(2)). Furthermore, an asymmetric supercapacitor was assembled using NiCo2S4@PPy-50/NF as positive electrode and activated carbon (AC) as negative electrode. The resulting NiCo2S4@PPy-50/NF//AC device exhibits a high energy density of 34.62 Wh/kg at a power density of 120.19 W/kg with good cycling performance (80.64% of the initial capacitance retention at 50 mA/cm(2) over 2500 cycles). The superior electrochemical performance can be attributed to the combined contribution of both component and unique core-shell heterostructure. The results demonstrate that the NiCo2S4@PPy-50 core-shell heterostructure nanotube array is promising as electrode material for supercapacitors in energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA