Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(3): 2290-2301, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207222

RESUMO

Anthocyanins with different structures have different anti-inflammatory and anti-cancer properties. Precise structural use can improve the chemopreventive effects of anthocyanins and enhance treatment outcomes because the anthocyanin structure influences its functional sites and activities. However, owing to the available variety of anthocyanins and their complex structures, the low matching of intermolecular forces between existing adsorbents and anthocyanins limits the targeted separation of anthocyanin monomers. Short-range and efficient selective binding, which is difficult to achieve, is the current focus in the extraction field. We here developed self-assembled Fe3O4-based nano adsorbers with different surface modifications based on adsorption-pairing synergy. The electrostatic force, coordination bond, hydrogen bond, and π-π* bond together induced selective adsorption between Fe3O4 nanoparticles and anthocyanin molecules. An acid-release solution disrupted the polarity balance in the aforementioned association system, thereby promoting the controlled release of anthocyanins. Among the candidates, the effects of morphology, particle size, surface charge, and functional group on adsorption performance were analyzed. The polyacrylamide-modified magnetic Fe3O4 nanoparticles were found to be favorable for selectively extracting anthocyanin, with an adsorption capacity of 19.74 ± 0.07 mg g-1. The release percentage of cyanidin-3-O-glucoside reached up to 98.6% ± 1.4%. This study offers a scientific basis for developing feasible nanotechniques to extract anthocyanins and plant active substances.


Assuntos
Antocianinas , Nanopartículas , Antocianinas/química , Preparações de Ação Retardada , Adsorção
2.
Nanomaterials (Basel) ; 13(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985860

RESUMO

Although ball milling is effective for biochar modification with metal oxides for efficient phosphate removal, the recyclability of the adsorbent as well as the precursors for modification, still need to be optimized. Herein, a magnesium-modified biochar was first prepared with the precursor of MgCl2·6H2O through the solvent-free ball milling method. After that, recyclable biochar beads were fabricated with the introduction of sodium alginate and Fe3O4. The beads were proved to have excellent adsorption performance for phosphate with a saturated capacity of 53.2 mg g-1, which is over 12 times higher than that of pristine biochar beads. Although the particle size reduction, surface area, and O-containing group increments after milling are beneficial for adsorption, the remarkable promotion in performance should mainly result from the appropriate formation of magniferous crystals on biochar, which greatly accelerates the electrostatic interactions as well as precipitation for adsorption. The beads also exhibited excellent magnetism-driven recyclability, which greatly avoids secondary contamination and broadens the application field of the adsorbent.

3.
Bioresour Technol ; 372: 128663, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693504

RESUMO

Although magnetic modification has potential for preparing recyclable biochar, the traditional preparation methods of loading magnetic materials on biochar will probably lead to pore blockage and consequently remarkable adsorption recession. Herein, a preparation method was developed in which ball milled biochar was loaded with ultrafine magnetite and then milled for a second time, thus generating a magnetic, recyclable biochar with minimal pore blockage. The deposits of magnetite did not significantly wrap the biochar, although a decreased sorption performance was still detectable. Benefitting from the extra milling step, surface functional groups and specific surface areas of the adsorbents were largely restored, thus leading to a 93.8 % recovery adsorption of 84.6 ± 2.5 mg/L on methylene blue. Meanwhile, the recyclability of the material was not affected. The adsorption was driven by multiple interactions. These twice-milled magnetic biochar is quite outstanding for sustainable removal of aqueous contaminants with its recyclability and high sorption efficiency.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Azul de Metileno , Óxido Ferroso-Férrico , Carvão Vegetal , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 830: 154545, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304147

RESUMO

Multifunctional hydrogels with excellent comprehensive performance are essential prerequisite for the implementation of effective water resources technology with high efficiency and low energy consumption. Inspired by the water purification and self-healing properties of natural plants, and based on the synergy of photothermal and biological effects, high photothermal Fe3O4 nanoparticles and natural polyhydroxy oligomeric proanthocyanidin (OPC) are introduced into a water-active polyvinyl alcohol (PVA) hydrogel. Two new bio-hydrogels of PVA/Fe3O4/graphite and PVA/OPC with self-healing and stretchable properties are proposed and designed. The obtained hydrogels exhibit reversible covalent cross-linked water-promoted healing (chemically) and photothermal melting/recrystallization healing (physically). The double-layered hydrogel composite demonstrates a dual response function (sunlight and near-infrared light), along with water purification properties. It is prepared through a water spray triggered self-healing process. The ultimate fracture strain of the photothermal layer and purification layer hydrogel was more than 1000% and 400% respectively after self-healing.After 48 h of hydrogel composite adsorption, the color of a methylene blue solution faded, and the absorption peak at 664 nm decreased. In addition, this research adopts a phased evaporation method to concentrate local energy and provide power for seawater evaporation. The evaporation efficiency of seawater induced by near-infrared (NIR) light was up to 3.15 kg m-2 h-1, whereas that under sunlight was 1.25 kg m-2 h-1. Selection of the evaporation excitation light source allowed control of the evaporation efficiency. The proposed technology is expected to be widely applicable to the staged evaporation of seawater as well as water purification.


Assuntos
Chenopodiaceae , Nanoestruturas , Hidrogéis/química , Água do Mar , Luz Solar , Água
5.
Nanomaterials (Basel) ; 11(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34578619

RESUMO

Functionalized carbon nanomaterials are considered to be an efficient modifier for ultrafiltration membranes with enhanced performance. However, most of the reported carbon nanomaterials are derived from unsustainable fossil fuels, while an extra modification is often essential before incorporating the nanomaterials in membranes, thus inevitably increasing the cost and complexity. In this work, novel functionalized biomass-based carbon nanoparticles were prepared successfully from agricultural wastes of corn stalks through simple one-step acid oxidation method. The obtained particles with the size of ~45 nm have excellent dispersibility in both aqueous and dimethyl formamide solutions with abundant oxygen-containing groups and negative potentials, which can endow the polysulfone ultrafiltration membranes with enhanced surface hydrophilicity, larger pore size, more finger-like pores, and lower surface roughness. Therefore, the separation and anti-fouling performance of membranes are improved simultaneously. Meanwhile, the addition of 0.4 wt% nanoparticles was proved to be the best condition for membrane preparation as excess modifiers may lead to particle aggregation and performance recession. It is expected that these biomass-based carbon nanoparticles are potential modifying materials for improving the separation performance and anti-fouling property of the membranes with great simplicity and renewability, which pave a new avenue for membrane modification and agricultural waste utilization.

6.
Innovation (Camb) ; 2(1): 100088, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557742

RESUMO

Thin polymer coatings covering on porous substrates are a common composite structure required in numerous applications, including membrane separation, and there is a strong need to push the coating thicknesses down to the nanometer scale to maximize the performances. However, producing such ultrathin polymer coatings in a facile and efficient way remains a big challenge. Here, uniform ultrathin polymer covering films (UPCFs) are realized by a facile and general approach based on rapid solvent evaporation. By fast evaporating dilute polymer solutions spread on the surface of porous substrates, we obtain ultrathin coatings (down to ∼30 nm) exclusively on the top surface of porous substrates, forming UPCFs with a block copolymer of polystyrene-block-poly(2-vinyl pyridine) at room temperature or a homopolymer of poly(vinyl alcohol) (PVA) at elevated temperatures. Upon selective swelling of the block copolymer and crosslinking of PVA, we obtain highly permeable membranes delivering ∼2-10 times higher permeance in ultrafiltration and pervaporation than state-of-the-art membranes with comparable selectivities. We have invented a very convenient but highly efficient process for the direct preparation of defective-free ultrathin coatings on porous substrates, which is extremely desired in different fields in addition to membrane separation.

7.
Polymers (Basel) ; 11(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842398

RESUMO

Anthocyanins are a class of antioxidants extracted from plants, with a variety of biochemical and pharmacological properties. However, the wide and effective applications of anthocyanins have been limited by their relatively low stability and bioavailability. In order to expand the application of anthocyanins, Fe3O4/anthocyanin magnetic biocomposite was fabricated for the storage and release of anthocyanin in this work. The magnetic biocomposite of Fe3O4 magnetic nanoparticle-loaded anthocyanin was prepared through physical intermolecular adsorption or covalent cross-linking. Scanning electron microscopy (SEM), Dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and thermal analysis were used to characterize the biocomposite. In addition, the anthocyanin releasing experiments were performed. The optimized condition for the Fe3O4/anthocyanin magnetic biocomposite preparation was determined to be at 60 °C for 20 h in weak alkaline solution. The smooth surface of biocomposite from SEM suggested that anthocyanin was coated on the surface of the Fe3O4 particles successfully. The average size of the Fe3O4/anthocyanin magnetic biocomposite was about 222 nm. Under acidic conditions, the magnetic biocomposite solids could be repeatable released anthocyanin, with the same chemical structure as the anthocyanin before compounding. Therefore, anthocyanin can be effectively adsorbed and released by this magnetic biocomposite. Overall, this work shows that Fe3O4/anthocyanin magnetic biocomposite has great potential for future applications as a drug storage and delivery nanoplatform that is adaptable to medical, food and sensing.

8.
Polymers (Basel) ; 11(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331062

RESUMO

Double-shelled hollow (DSH) structures with varied inorganic compositions are confirmed to have improved performances in diverse applications, especially in lithium ion battery. However, it is still of great challenge to obtain these complex nanostructures with traditional hard templates and solution-based route. Here we report an innovative pathway for the preparation of the DSH nanospheres based on block copolymer self-assembly, metal-ligand coordination and atomic layer deposition. Polymeric composite micelles derived from amphiphilic block copolymers and ferric ions were prepared with heating-enabled micellization and metal-ligand coordination. The DSH nanospheres with Fe2O3 stands inner and TiO2 outer the structures can be obtained with atomic layer deposition of a thin layer of TiO2 followed with calcination in air. The coordination was carried out at room temperature and the deposition was performed at the low temperature of 80 °C, thus providing a feasible fabrication strategy for DSH structures without destruction of the templates. The cavity and the outer layer of the structures can also be simply tuned with the utilized block copolymers and the deposition cycles. These DSH inorganic nanospheres are expected to find vital applications in battery, catalysis, sensing and drug delivery, etc.

9.
Langmuir ; 33(42): 11590-11602, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28830141

RESUMO

We have infused graphene/ionic liquid into block copolymer homoporous membranes (HOMEs), which have highly ordered uniform cylindrical nanopores, to form compact, dense, and continuous graphene/ionic liquid (Gr/IL) lubricating layers at interfaces, enabling a reduction in the friction coefficient. Raman and XPS analyses, confirmed the parallel alignment of the cation of ILs on graphene by the π-π stacking interaction of the imidazolium ring with the graphene layer. This alignment loosens the lattice spacing of Gr in Gr/ILs, leading to a larger lattice spacing of 0.36 nm in Gr of Gr/ILs hybrids than the pristine Gr (0.33 nm). The loose graphene layers, which are caused by the coexistence of graphene and ILs, would make the sliding easier, and favor the lubrication. An increase in the friction coefficient was observed on ILs-infused block copolymer HOMEs, as compared to Gr/ILs-infused ones, due to the absence of Gr and the unstably formed ILs film. Gr/ILs-infused block copolymer HOMEs also exhibit much smaller residual indentation depth and peak indentation depth in comparison with ILs-infused ones. This indicates that the existence of stably supported Gr/ILs hybrid liquid films aids the reduction of the friction coefficient by preventing the thinning of the lubricant layer and exposure of the underlying block copolymer HOMEs.

10.
Soft Matter ; 11(35): 6927-37, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26226937

RESUMO

Switchable nanoporous films, which can repeatedly alternate their porosities, are of great interest in a diversity of fields. Currently these intelligent materials are mostly based on polyelectrolytes and their porosities can change only in relatively narrow ranges, typically under wet conditions, severely limiting their applications. Here we develop a new system, which is capable of reversibly switching between a highly porous state and a nonporous state dozens of times regulated simply by exposure to selective solvents. In this system nanopores are created or reversibly eliminated in films of a block copolymer, polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP), by exposing the films to P2VP-selective or PS-selective solvents, respectively. The mechanism of the switch is based on the selective swelling of the constituent blocks in corresponding solvents, which is a nondestructive and easily controllable process enabling the repeatable and ample switch between the open and the closed state. Systematic microscopic and ellipsometric characterization methods are performed to elucidate the pore-closing course induced by nonsolvents and the cycling between the pore-open and the pore-closed state up to 20 times. The affinity of the solvent for PS blocks is found to play a dominating role in determining the pore-closing process and the porosities of the pore-open films increase with the cycling numbers as a result of loose packing conditions of the polymer chains. We finally demonstrate the potential applications of these films as intelligent antireflection coatings and drug carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA