Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2400639, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664988

RESUMO

Lithium-sulfur (Li-S) batteries, operated through the interconversion between sulfur and solid-state lithium sulfide, are regarded as next-generation energy storage systems. However, the sluggish kinetics of lithium sulfide deposition/dissolution, caused by its insoluble and insulated nature, hampers the practical use of Li-S batteries. Herein, leaf-like carbon scaffold (LCS) with the modification of Mo2C clusters (Mo2C@LCS) is reported as host material of sulfur powder. During cycles, the dissociative Mo ions at the Mo2C@LCS/electrolyte interface are detected to exhibit competitive binding energy with Li ions for lithium sulfide anions, which disrupts the deposition behavior of crystalline lithium sulfide and trends a shift in the configuration of lithium sulfide toward an amorphous structure. Combining the related electrochemical study and first-principle calculation, it is revealed that the formation of amorphous lithium sulfides shows significantly improved kinetics for lithium sulfide deposition and decomposition. As a result, the obtained Mo2C@LCS/S cathode shows an ultralow capacity decay rate of 0.015% per cycle at a high mass loading of 9.5 mg cm-2 after 700 cycles. More strikingly, an ultrahigh sulfur loading of 61.2 mg cm-2 can also be achieved. This work defines an efficacious strategy to advance the commercialization of Mo2C@LCS host for Li-S batteries.

2.
J Am Chem Soc ; 146(10): 7076-7087, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428949

RESUMO

The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.

3.
Adv Mater ; 36(24): e2312300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552255

RESUMO

O3-type layered transition metal cathodes are promising energy storage materials due to their sufficient sodium reservoir. However, sluggish sodium ions kinetics and large voltage hysteresis, which are generally associated with Na+ diffusion properties and electrochemical phase transition reversibility, drastically minimize energy density, reduce energy efficiency, and hinder further commercialization of sodium-ion batteries (SIBs). Here, this work proposes a high-entropy tailoring strategy through manipulating the electronic local environment within transition metal slabs to circumvent these issues. Experimental analysis combined with theoretical calculations verify that high-entropy metal ion mixing contributes to the improved reversibility of redox reaction and O3-P3-O3 phase transition behaviors as well as the enhanced Na+ diffusivity. Consequently, the designed O3-Na0.9Ni0.2Fe0.2Co0.2Mn0.2Ti0.15Cu0.05O2 material with high-entropy characteristic could display a negligible voltage hysteresis (<0.09 V), impressive rate capability (98.6 mAh g-1 at 10 C) and long-term cycling stability (79.4% capacity retention over 2000 cycles at 5 C). This work provides insightful guidance in mitigating the voltage hysteresis and facilitating Na+ diffusion of layered oxide cathode materials to realize high-rate and high-energy SIBs.

4.
Small ; 20(9): e2306695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857593

RESUMO

Reversible oxygen redox (OR) is considered as a paradigmatic avenue to boost the energy densities of layered oxide cathodes. However, its activation is largely coupled with the local coordination environment around oxygen, which is usually accompanied with irreversible oxygen release and unfavorable structure distortion. Herein, it is revealed that the synergistic effect of transition-metal (TM) vacancy and substitution element for modulating the OR activity and reversibility of layered Na0.67 MnO2 through multimodal operando synchrotron characterizations and electrochemical investigations. It is disclosed that TM vacancy can not only suppress the complicated phase transition but also stimulate the OR activity by creating nonbonding O 2p states via the Na─O─vacancy configurations. Notably, the substitution element plays a decisive role for regulating the reversibility of vacancy-boosted OR activity: the presence of strong Al─O bonds stabilizes the Mn-O motifs by sharing O with Al in the rigid Mn─O─Al frameworks, which mitigates TM migration and oxygen release induced by TM vacancy, leading to enhanced OR reversibility; while the introduction of weak Zn─O bonds exacerbates TM migration and irreversible oxygen release. This work clarifies the critical role of both TM vacancy and substitution element for regulating the OR chemistry, providing an effective avenue for designing high-performance cathodes employing anionic redox.

5.
J Am Chem Soc ; 145(50): 27740-27747, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059924

RESUMO

Mass adoption of electric vehicles and the depletion of finite metal resources make it imperative to recycle lithium-ion batteries (LIBs). However, current recycling routes of pyrometallurgy and hydrometallurgy are mainly developed for LiCoO2 and suffer from great energy inputs and extensive processing; thus, alternative versatile and green approaches are in urgent demand. Here, we report an ingenious and versatile strategy for recycling LIBs via catalyst reconstruction, using hydrogen evolution reaction as a proof of concept. Layered, spinel, and polyanion oxide cathode materials, as catalysts, are structurally transformed into hydroxides assisted by protons or hydroxide ions, facilitating complete metal extraction (e.g., Li, Co, Ni, Mn, Fe) with high leaching efficiencies approaching 100%. This recycling method is generally applicable to almost all commercial cathode systems and extended to actual spent pouch cells. Such a green hydrogen coupling approach provides a versatile and sustainable alternative to conventional approaches and has a broad impact beyond battery recycling.

6.
Adv Mater ; 35(52): e2307736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37909806

RESUMO

There has been increasing interests in π-d conjugated coordination polymers (CCPs) for energy storage because of their rapid charge transfer through long-range planar π-d conjugation between ligands and metal centers. Nevertheless, currently reported CCPs for energy storage are mostly based on 1D or 2D structures. There are few 3D CCPs reported to date because of the great challenge in constructing nonplanar coordination geometries, let alone their applications in multivalent ions storage. Herein, a triphenylene-catecholate-based 3D CCP (Mn-HHTP) is successfully synthesized assembled from the multidentate chelating groups of hexahydroxytriphenylene (HHTP) ligands and their isotropic coordination with Mn2+ ions. The 3D conjugated structure of Mn-HHTP enables an exceptional cycle life of >4000 cycles at 0.5 A g-1 for multivalent Mg2+ ion storage, which is far superior to most organic and inorganic electrode materials. Experimental characterizations combined with theoretical calculations indicate that the semiquinone radicals at the HHTP ligands are the electroactive centers for Mg2+ ions storage. The excellent performance of Mn-HHTP opens a new avenue towards the design of 3D CCPs for long-life rechargeable magnesium-ion batteries.

7.
Chem Commun (Camb) ; 59(75): 11208-11211, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37650544

RESUMO

Selenium cathodes have attracted much attention because of the high electronic conductivity and energy density. However, the shuttle effect of lithium polyselenides (LiPSes) leads to rapid capacity fading, hindering the practical application of lithium-selenium (Li-Se) batteries. Herein, an ultrafine MoC catalyst has been synthesized and utilized to accelerate the conversion from liquid LiPSes to solid Li2Se2/Li2Se, leading to suppressed shuttle effect and thus improved battery performance. Our present study provides valuable inspiration to the future exploration for the rational design of high-efficient catalysts for practical Li-Se batteries.

8.
Angew Chem Int Ed Engl ; 62(21): e202302302, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36959698

RESUMO

The performance of aqueous Zn ion batteries (AZIBs) is highly dependent on inner Helmholtz plane (IHP) chemistry. Notorious parasitic reactions containing hydrogen evolution reactions (HER) and Zn dendrites both originate from abundant free H2 O and random Zn deposition inside active IHP. Here, we report a universal high donor number (DN) additive pyridine (Py) with only 1 vol. % addition (Py-to-H2 O volume ratio), for regulating molecule distribution inside IHP. Density functional theory (DFT) calculations and molecular dynamics (MD) simulation verify that incorporated Py additive could tailor Zn2+ solvation sheath and exclude H2 O molecules from IHP effectively, which is in favor of preventing H2 O decomposition. Consequently, even at extreme conditions such as high depth of discharge (DOD) of 80 %, the symmetric cell based on Py additive can sustain approximately 500 h long-term stability. This efficient strategy with high DN additives furnishes a promising direction for designing novel electrolytes and promoting the practical application of AZIBs, despite inevitably introducing trace organic additives.

9.
Adv Mater ; 35(8): e2209556, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493783

RESUMO

Utilizing anionic redox activity within layered oxide cathode materials represents a transformational avenue for enabling high-energy-density rechargeable batteries. However, the anionic oxygen redox reaction is often accompanied with irreversible dynamic oxygen evolution, leading to unfavorable structural distortion and thus severe voltage decay and rapid capacity fading. Herein, it is proposed and validated that the dynamic oxygen evolution can be effectively suppressed through the synergistic surface CaTiO3 dielectric coating and bulk site-selective Ca/Ti co-doping for layered Na2/3 Ni1/3 Mn2/3 O2 . The surface dielectric coating layer not only suppresses the surface oxygen release but more importantly inhibits the bulk oxygen migration by creating a reverse electric field through dielectric polarization. Meanwhile, the site-selective doping of oxygen-affinity Ca into Na layers and Ti into transition metal layers effectively stabilizes the bulk oxygen through modulating the O 2p band center and the oxygen migration barrier. Such a strategy also leads to a reversible structural evolution with a low volume change because of the enhanced structural integrality and improved oxygen rigidity. Because of these synergistic advantages, the designed electrode exhibits greatly suppressed voltage decay and capacity fading upon long-term cycling. This study affords a promising strategy for regulating the dynamic oxygen evolution to achieve high-capacity layered cathode materials.

10.
Angew Chem Int Ed Engl ; 62(8): e202216286, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36546717

RESUMO

Fundamentally understanding the structure-property relationship is critical to design advanced electrocatalysts for lithium-sulfur (Li-S) batteries, which remains a formidable challenge. Herein, by manipulating the regulable cations in spinel oxides, their geometrical-site-dependent catalytic activity for sulfur redox is investigated. Experimental and theoretical analyses validate that the modulation essence of cooperative catalysis of lithium polysulfides (LiPSs) is dominated by LiPSs adsorption competition between Co3+ tetrahedral (Td) and Mn3+ octahedral (Oh) sites on Mn3+ Oh -O-Co3+ Td backbones. Specifically, high-spin Co3+ Td with stronger Co-S covalency anchors LiPSs persistently, while electron delocalized Mn3+ Oh with adsorptive orbital (dz 2 ) functions better in catalyzing specialized LiPSs conversion. This work inaugurates a universal strategy for sculpting geometrical configuration to achieve charge, spin, and orbital topological regulation in electrocatalysts for Li-S batteries.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36315848

RESUMO

Developing efficient electrocatalysts to accelerate the sluggish conversion of lithium polysulfides (LiPSs) is of paramount importance for improving the performances of lithium-sulfur (Li-S) batteries. However, a consensus has not yet been reached on the in situ evolution of the electrocatalysts as well as the real catalytic active sites. Herein, defective MnV2O6 (D-MVO) is designed as a precatalyst toward LiPSs' adsorption and conversion. We reveal that the introduction of surface V defects can effectively accelerate the in situ sulfurization of D-MVO during the electrochemical cycling process, which acts as the real electrocatalyst for LiPSs' retention and catalysis. The in situ-sulfurized D-MVO demonstrates much higher electrocatalytic activity than the defect-free MVO toward LiPSs' redox conversion. With these merits, the Li-S batteries with D-MVO separators achieve superior long-term cycling performance with a low decay rate of 0.056% per cycle after 1000 cycles at 1C. Even under an elevated sulfur loading of 5.5 mg cm-2, a high areal capacity of 4.21 mAh cm-2 is still retained after 50 cycles at 0.1C. This work deepens the cognition of the dynamic evolution of the electrocatalysts and provides a favorable strategy for designing efficient precatalysts for advanced Li-S batteries using defect engineering.

12.
Adv Mater ; 34(28): e2202256, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35546336

RESUMO

The lithium-sulfur (Li-S) battery is considered as an appealing candidate for next-generation electrochemical energy storage systems because of high energy and low cost. Nonetheless, its development is plagued by the severe polysulfide shuttling and sluggish reaction kinetics. Although single-atom catalysts (SACs) have emerged as a promising remedy to expedite sulfur redox chemistry, the mediocre single-atom loading, inferior atomic utilization, and elusive catalytic pathway handicap their practical application. To tackle these concerns, in this work, unsaturated Fe single atoms with high loading capacity (≈6.32 wt%) are crafted on a 3D hierarchical C3 N4 architecture (3DFeSA-CN) by means of biotemplated synthesis. By electrokinetic analysis and theoretical calculations, it is uncovered that the 3DFeSA-CN harnesses robust electrocatalytic activity to boost dual-directional sulfur redox. As a result, S@3DFeSA-CN can maintain a durable cyclic performance with a negligible capacity decay rate of 0.031% per cycle over 2000 cycles at 1.0 C. More encouragingly, an assembled Li-S battery with a sulfur loading of 5.75 mg cm-2 can harvest a high areal capacity of 6.18 mAh cm-2 . This work offers a promising solution to optimize the carbonaceous support and coordination environment of SACs, thereby ultimately elevating dual-directional sulfur redox in pragmatic Li-S batteries.

13.
ACS Appl Mater Interfaces ; 14(15): 17570-17577, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35390250

RESUMO

Rechargeable aqueous zinc-ion batteries (AZIBs) are close complements to lithium-ion batteries for next-generation grid-scale applications owing to their high specific capacity, low cost, and intrinsic safety. Nevertheless, the viable cathode materials (especially manganese oxides) of AZIBs suffer from poor conductivity and inferior structural stability upon cycling, thereby impeding their practical applications. Herein, a facile synthetic strategy of bead-like manganese oxide coated with carbon nanofibers (MnOx-CNFs) based on electrospinning is reported, which can effectively improve the electron/ion diffusion kinetics and provide robust structural stability. These benefits of MnOx-CNFs are evident in the electrochemical performance metrics, with a long cycling durability (i.e., a capacity retention of 90.6% after 2000 cycles and 71% after 5000 cycles) and an excellent rate capability. Furthermore, the simultaneous insertion of H+/Zn2+ and the Mn redox process at the surface and in the bulk of MnOx-CNFs are clarified in detail. Our present study not only provides a simple avenue for synthesizing high-performance Mn-based cathode materials but also offers unique knowledge on understanding the corresponding electrochemical reaction mechanism for AZIBs.

14.
Adv Mater ; 34(20): e2201152, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35315130

RESUMO

Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal-oxygen covalency for layered electrode of Na-ion batteries. By developing a novel layered P2-Na0.6 Mg0.15 Mn0.7 Cu0.15 O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu-free counterpart, as directly quantified through high-efficiency mapping of resonant inelastic X-ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid-solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal-oxygen covalency for enhancing the reversibility of lattice OR toward high-capacity electrodes employing OR chemistry.

15.
ACS Appl Mater Interfaces ; 14(5): 6937-6944, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080867

RESUMO

Mediating the redox kinetics of polysulfides is a promising strategy to mitigate the shuttling and sluggish conversion of polysulfides for practical application of lithium-sulfur (Li-S) batteries. Herein, novel TiH2 nanodots (THNDs) fabricated by sonication-assisted liquid-phase exfoliation are used as bifunctional electrocatalysts for Li-S batteries. Both experimental and theoretical results reveal that THNDs can not only provide a strong chemical affinity to polysulfides but also bidirectionally promote the precipitation/decomposition of Li2S from/to polysulfides during the discharge/charge process, thus effectively suppressing the shuttle effect and improving the redox kinetics of polysulfides. Owing to these advantages accompanied by the abundant catalytically active sites of THNDs, the assembled Li-S batteries deliver a low capacity fading rate of 0.055% per cycle over 1000 cycles at 1C and a high areal capacity of 5.38 mAh cm-2 after 50 cycles with a high sulfur loading of 8.5 mg cm-2. This work demonstrates the great potential of utilizing functional metal hydrides as effective electrocatalysts for Li-S batteries, which will incite more investigation into the specific selection of metal compounds to boost the redox kinetics of polysulfides.

16.
Small Methods ; 6(3): e2101524, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35084117

RESUMO

Sodium-ion batteries (SIBs) have attracted widespread attention for large-scale energy storage, but one major drawback, i.e., the limited capacity of cathode materials, impedes their practical applications. Oxygen redox reactions in layered oxide cathodes are proven to contribute additionally high specific capacity, while such cathodes often suffer from irreversible structural transitions, causing serious capacity fading and voltage decay upon cycling, and the formation process of the oxidized oxygen species remains elusive. Herein, a series of Al-doped P2-type Na0.6 Ni0.3 Mn0.7 O2 cathode materials for SIBs are reported and the corresponding charge compensation mechanisms are investigated qualitatively and quantitatively. The combined analyses reveal that Al doping boosts the reversible oxygen redox reactions through the reductive coupling reactions between orphaned O 2p states in NaOAl local configurations and Ni4+ ions, as directly evidenced by X-ray absorption fine structure results. Additionally, Al doping also induces an increased interlayer spacing and inhibits the unfavorable P2 to O2 phase transition upon desodiation/sodiation, which is common in P2-type Mn-based cathode materials, leading to the great improvement in capacity retention and rate capability. This work provides deeper insights into the development of structurally stable and high-capacity layered cathode materials for SIBs with anion-cation synergetic contributions.

17.
Adv Mater ; 33(51): e2105067, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632643

RESUMO

Integrating sulfur cathodes with effective catalysts to accelerate polysulfide conversion is a suitable way for overcoming the serious shuttling and sluggish conversion of polysulfides in lithium-sulfur batteries. However, because of the sharp differences in the redox reaction kinetics and complicated phase transformation of sulfur, a single-component catalyst cannot consistently accelerate the entire redox process. Herein, hierarchical and defect-rich Co3 O4 /TiO2 p-n junctions (p-Co3 O4 /n-TiO2 -HPs) are fabricated to implement the sequential catalysis of S8(solid)  â†’ Li2 S4(liquid)  â†’ Li2 S(solid) . Co3 O4 sheets physiochemically immobilize the pristine sulfur and ensure the rapid reduction of S8 to Li2 S4 , while TiO2 dots realize the effective precipitation of Li2 S, bridged by the directional migration of polysulfides from p-type Co3 O4 to n-type TiO2 attributed to the interfacial built-in electric field. As a result, the sulfur cathode coupled with p-Co3 O4 /n-TiO2 -HPs delivers long-term cycling stability with a low capacity decay of 0.07% per cycle after 500 cycles at 10 C. This study demonstrates the synergistic effect of the built-in electric field and heterostructures in spatially enhancing the stepwise conversion of polysulfides, which provides novel insights into the interfacial architecture for rationally regulating the polysulfide redox reactions.

18.
Biochemistry ; 49(24): 5057-65, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20481578

RESUMO

On the basis of mutagenesis, biochemical, and structural studies, heptad repeat 1 of HIV gp41 (HR1) has been shown to play numerous critical roles in HIV entry, including interacting with gp120 in prefusion states and interacting with gp41 heptad repeat 2 (HR2) in the fusion state. Moreover, HR1 is the site of therapeutic intervention by enfuviritide, a peptide analogue of HR2. In this study, the functional importance of each amino acid residue in gp41 HR1 has been systematically examined by alanine scanning mutagenesis, with subsequent characterization of the mutagenic effects on folding (as measured by incorporation into virions), association with gp120, and membrane fusion. The mutational effects on entry can be grouped into three classes: (1) wild type (defined as >40% of wild-type entry), (2) impaired (defined as 5-40% of wild-type entry), and (3) nonfunctional (defined as <5% of wild-type entry). Interestingly, the majority of HR1 mutations (77%) exhibit impaired or nonfunctional entry. Surprisingly, effects of mutations on folding, association, or fusion are not correlated to heptad position; however, folding defects are most often found in the N-terminal region of HR1. Moreover, disruption of the gp41-gp120 interaction is correlated to the C-terminal region of HR1, suggesting that this region interacts most closely with gp120. In summary, the sensitivity of gp41 HR1 to alanine substitutions suggests that even subtle changes in the local environment may severely affect envelope function, thereby strengthening the notion that HR1 is an attractive site for therapeutic intervention.


Assuntos
Alanina/genética , Proteína gp120 do Envelope de HIV/fisiologia , Proteína gp41 do Envelope de HIV/genética , HIV-1/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Proteína gp41 do Envelope de HIV/fisiologia , HIV-1/genética , Humanos , Fusão de Membrana , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Dobramento de Proteína , Sequências Repetitivas de Aminoácidos , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA