Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Sci (Weinh) ; : e2307981, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713722

RESUMO

Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.

2.
J Pharm Pharmacol ; 75(12): 1569-1580, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37862582

RESUMO

OBJECTIVES: This study addresses the bioavailability challenges associated with oral nicotinamide mononucleotide (NMN) administration by introducing an innovative NMN formulation incorporated with hydroxyapatite (NMN-HAP). METHODS: The NMN-HAP was developed using a wet chemical precipitation and physical adsorption method. To assess its superiority over conventional free NMN, we examined NMN, nicotinamide adenine dinucleotide (NAD+), and nicotinamide riboside (NR) levels in mouse plasma and tissues following oral administration of NMN-HAP. KEY FINDINGS: NMN-HAP nanoparticles demonstrated a rod-shaped morphology, with an average size of ~50 nm, along with encapsulation efficiency and drug loading capacity exceeding 40%. In vitro, drug release results indicated that NMN-HAP exhibited significantly lower release compared with free NMN. In vivo studies showed that NMN-HAP extended circulation time, improved bioavailability compared with free NMN, and elevated plasma levels of NMN, NAD+, and NR. Moreover, NMN-HAP administration displayed tissue-specific distribution with a substantial accumulation of NMN, NAD+, and NR in the brain and liver. CONCLUSION: NMN-HAP represents an ideal formulation for enhancing NMN bioavailability, enabling tissue-specific delivery, and ultimately elevating in vivo NAD+ levels. Considering HAP's biocompatible nature and versatile characteristics, we anticipate that this system has significant potential for various future applications.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Disponibilidade Biológica , Encéfalo/metabolismo , Hidroxiapatitas
3.
Anal Chem ; 95(2): 686-694, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36601728

RESUMO

To date, the extremely high polarity and poor signal intensity of macromolecular nucleic acids are greatly impeding the progress of mass spectrometry technology in the quality control of nucleic acid drugs and the characterization of DNA oxidation and RNA modifications. We recently described a general N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) labeling method for oligonucleotide determination and applied it to the full-range profiling of tRNA in vitro and in vivo studies for the first time. The primary advantages of this method include strong retention, no observable byproducts, predictable and easily interpreted MS2 data, and the circumvention of instrument harmful reagents that were necessary in previous methods. Selective labeling of N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide to the terminal phosphate groups of oligonucleotides endows it broadly applicable for DNA/RNA profiling. Moreover, the improvement of sequence coverage was achieved in yeast tRNAphe(GAA) analysis owing to this method's good detection capability of 1-12 nucleotides in length. We also extended this strategy to determine the abundance of modified bases and discover new modifications via digesting RNA into single-nucleotide products, promoting the comprehensive mapping of RNA. The easy availability of derivatization reagent and the simple, rapid one-step reaction render it easy to operate for researchers. When applied in characterizing tRNAs in HepG2 cells and rats with nonalcoholic fatty liver disease, a fragment of U[m1G][m2G], specific for tRNAAsn(QUU) in cells, was significantly upregulated, indicating a possible clue to nonalcoholic fatty liver disease pathogenesis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácidos Nucleicos , Animais , Ratos , Oligonucleotídeos , RNA , RNA de Transferência , Nucleotídeos
4.
Mol Ther Nucleic Acids ; 29: 672-688, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36090756

RESUMO

Traditional Chinese medicines (TCMs) have been widely used for treating ischemic heart disease (IHD), and secondary metabolites are generally regarded as their pharmacologically active components. However, the effects of nucleic acids in TCMs remain unclear. We reported for the first time that a 22-mer double-strand RNA consisting of HC83 (a tRNA-derived fragment [tRF] from the 3' end of tRNAGln(UUG) of ginseng) and its complementary sequence significantly promoted H9c2 cell survival after hypoxia/reoxygenation (H/R) in vitro. HC83_mimic could also significantly improve cardiac function by maintaining both cytoskeleton integrity and mitochondrial function of cardiomyocytes. Further in vivo investigations revealed that HC83_mimic is more potent than metoprolol by >500-fold against myocardial ischemia/reperfusion (MI/R) injury. In-depth studies revealed that HC83 directly downregulated a lncRNA known as myocardial infarction-associated transcript (MIAT) that led to a subsequent upregulation of VEGFA expression. These findings provided the first evidence that TCM-derived tRFs can exert miRNA-like functions in mammalian systems, therefore supporting the idea that TCM-derived tRFs are promising RNA drug candidates shown to have extraordinarily potent effects. In summary, this study provides a novel strategy not only for discovering pharmacologically active tRFs from TCMs but also for efficiently exploring new therapeutic targets for various diseases.

5.
mSystems ; 7(2): e0016422, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35400173

RESUMO

tRNAs purified from non-pathogenic Escherichia coli strains (NPECSs) possess cytotoxic properties on colorectal cancer cells. In the present study, the bioactivity of tRNA halves and tRNA fragments (tRFs) derived from NPECSs are investigated for their anticancer potential. Both the tRNA halves and tRF mimics studied exhibited significant cytotoxicity on colorectal cancer cells, with the latter being more effective, suggesting that tRFs may be important contributors to the bioactivities of tRNAs derived from the gut microbiota. Through high-throughput screening, the EC83 mimic, a double-strand RNA with a 22-nucleotide (nt) 5'-tRF derived from tRNA-Leu(CAA) as an antisense chain, was identified as the one with the highest potency (50% inhibitory concentration [IC50] = 52 nM). Structure-activity investigations revealed that 2'-O-methylation of the ribose of guanosine (Gm) may enhance the cytotoxic effects of the EC83 mimic via increasing the stability of its tertiary structure, which is consistent with the results of in vivo investigations showing that the EC83-M2 mimic (Gm modified) exhibited stronger antitumor activity against both HCT-8 and LoVo xenografts. Consistently, 4-thiouridine modification does not. This provides the first evidence that the bioactivity of tRF mimics would be impacted by chemical modifications. Furthermore, the present study provides the first evidence to suggest that novel tRNA fragments derived from the gut microbiota may possess anticancer properties and have the potential to be potent and selective therapeutic molecules. IMPORTANCE While the gut microbiota has been increasingly recognized to be of vital importance for human health and disease, the current literature shows that there is a lack of attention given to non-pathogenic Escherichia coli strains. Moreover, the biological activities of tRNA fragments (tRFs) derived from bacteria have rarely been investigated. The findings from this study revealed tRFs as a new class of bioactive constituents derived from gut microorganisms, suggesting that studies on biological functional molecules in the intestinal microbiota should not neglect tRFs. Research on tRFs would play an important role in the biological research of gut microorganisms, including bacterium-bacterium interactions, the gut-brain axis, and the gut-liver axis, etc. Furthermore, the guidance on the rational design of tRF therapeutics provided in this study indicates that further investigations should pay more attention to these therapeutics from probiotics. The innovative drug research of tRFs as potent druggable RNA molecules derived from intestinal microorganisms would open a new area in biomedical sciences.


Assuntos
Neoplasias Colorretais , RNA de Transferência , Humanos , RNA de Transferência/química , Escherichia coli/genética , Relação Estrutura-Atividade
6.
Mol Ther Nucleic Acids ; 27: 718-732, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35317282

RESUMO

Drug discovery from plants usually focuses on small molecules rather than such biological macromolecules as RNAs. Although plant transfer RNA (tRNA)-derived fragment (tRF) has been associated with the developmental and defense mechanisms in plants, its regulatory role in mammals remains unclear. By employing a novel reverse small interfering RNA (siRNA) screening strategy, we show that a tRF mimic (antisense derived from the 5' end of tRNAHis(GUG) of Chinese yew) exhibits comparable anti-cancer activity with that of taxol on ovarian cancer A2780 cells, with a 16-fold lower dosage than that of taxol. A dual-luciferase reporter assay revealed that tRF-T11 directly targets the 3' UTR of oncogene TRPA1 mRNA. Furthermore, an Argonaute-RNA immunoprecipitation (AGO-RIP) assay demonstrated that tRF-T11 can interact with AGO2 to suppress TRPA1 via an RNAi pathway. This study uncovers a new role of plant-derived tRFs in regulating endogenous genes. This holds great promise for exploiting novel RNA drugs derived from nature and sheds light on the discovery of unknown molecular targets of therapeutics.

7.
Anal Chem ; 93(3): 1423-1432, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33382261

RESUMO

Transfer RNAs (tRNAs) are the most heavily modified RNA species. Liquid chromatography coupled with mass spectrometry (LC-MS/MS) is a powerful tool for characterizing tRNA modifications, which involves pretreating tRNAs with base-specific ribonucleases to produce smaller oligonucleotides amenable to MS. However, the quality and quantity of products from base-specific digestions are severely impacted by the base composition of tRNAs. This often leads to a loss of sequence information. Here, we report a method for the full-range profiling of tRNA modifications at single-base resolution by combining site-specific RNase H digestion with the LC-MS/MS and RNA-seq techniques. The key steps were designed to generate high-quality products of optimal lengths and ionization properties. A linear correlation between collision energies and the m/z of oligonucleotides significantly improved the information content of collision-induced dissociation (CID) spectra. False positives were eliminated by up to 95% using novel inclusion criteria for collecting a census of modifications. This method is illustrated by the mapping of mouse mitochondrial tRNAHis(GUG) and tRNAVal(UAC), which were hitherto not investigated. The identities and locations of the five species of modifications on these tRNAs were fully characterized. This approach is universally applicable to any tRNA species and provides an experimentally realizable pathway to the de novo sequencing of post-transcriptionally modified tRNAs with high sequence coverage.


Assuntos
RNA de Transferência/metabolismo , Animais , Cromatografia Líquida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/química , Mitocôndrias/metabolismo , RNA de Transferência/análise , Espectrometria de Massas em Tandem
8.
Nucleic Acids Res ; 49(1): 38-52, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33290562

RESUMO

Acquired drug resistance is a major obstacle in cancer therapy. Recent studies revealed that reprogramming of tRNA modifications modulates cancer survival in response to chemotherapy. However, dynamic changes in tRNA modification were not elucidated. In this study, comparative analysis of the human cancer cell lines and their taxol resistant strains based on tRNA mapping was performed by using UHPLC-MS/MS. It was observed for the first time in all three cell lines that 4-demethylwyosine (imG-14) substitutes for hydroxywybutosine (OHyW) due to tRNA-wybutosine synthesizing enzyme-2 (TYW2) downregulation and becomes the predominant modification at the 37th position of tRNAphe in the taxol-resistant strains. Further analysis indicated that the increase in imG-14 levels is caused by downregulation of TYW2. The time courses of the increase in imG-14 and downregulation of TYW2 are consistent with each other as well as consistent with the time course of the development of taxol-resistance. Knockdown of TYW2 in HeLa cells caused both an accumulation of imG-14 and reduction in taxol potency. Taken together, low expression of TYW2 enzyme promotes the cancer survival and resistance to taxol therapy, implying a novel mechanism for taxol resistance. Reduction of imG-14 deposition offers an underlying rationale to overcome taxol resistance in cancer chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Paclitaxel/farmacologia , Processamento Pós-Transcricional do RNA/genética , RNA Neoplásico/química , RNA de Transferência de Fenilalanina/química , Células A549 , Sequência de Bases , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformação de Ácido Nucleico , Neoplasias Ovarianas/patologia , RNA Neoplásico/fisiologia , RNA de Transferência de Fenilalanina/fisiologia , Espectrometria de Massas em Tandem , Ensaio Tumoral de Célula-Tronco
9.
Int J Biol Macromol ; 142: 355-365, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593735

RESUMO

Transfer RNAs (tRNAs) are the most abundant class in small non-coding RNAs which have been proved to be pharmacologically active. In the present study, we evaluated the potential anticancer activities of tRNAs from Escherichia coli MRE 600 to investigate the relationship between non-pathogenic Escherichia coli strain and colorectal cancer. To purify individual tRNAs, we firstly developed a two-dimensional liquid chromatography (2D-LC) and successfully obtained two pure tRNAs. Nuclease mediated base-specific digestions coupled with UHPLC-MS/MS techniques led to an identification of these two tRNAs as tRNA-Val(UAC) and tRNA-Leu(CAG) with typical cloverleaf-like secondary structure. MTT assay demonstrated that both tRNA-1 and tRNA-2 exhibit strong cytotoxicity with IC50 of 113.0 nM and 124.8 nM on HCT-8 cells in a dose-dependent manner. Further clonogenic assay revealed that the purified tRNAs exhibit significant inhibition in colony formation with survival percentage of 79.0 ±â€¯1.6 and 71.2 ±â€¯2.2 at the concentration of 100 nM. These findings provided evidences of anticancer activities of tRNAs from non-pathogenic Escherichia coli strain, indicating that the pharmacological effects of these neglected biomacromolecules from microorganisms should be emphasized. This study put new insights into the therapeutic effects of intestinal microorganism on human diseases, therefore broadened our knowledge of the biological functions of gut microbiota.


Assuntos
Escherichia coli/genética , RNA Bacteriano/química , RNA Bacteriano/isolamento & purificação , RNA de Transferência/química , RNA de Transferência/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA de Transferência/genética , Espectrometria de Massas em Tandem
10.
Sci Rep ; 7(1): 3858, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634336

RESUMO

This study aims to determine whether enzyme activities are correlated with protein amounts and mRNA expression levels of five major human sulfotransferase (SULT) enzymes in 10 matched pericarcinomatous and hepatocellular carcinoma liver samples. The MRM UHPLC-MS/MS method, Western blot and RT-PCR were used along with SULT activity measurement using probe substrates. The LC-MS/MS method was specific for all five tested SULTs, whereas Western blot was specific for only two isoforms. The activities of SULT1A1, SULT1B1, SULT1E1 and SULT2A1 in 9 of 10 samples showed a significant decrease in tumor tissues relative to matched pericarcinomatous tissues, whereas the activities of SULT1A3 in 7 of 10 samples increased. The turnover numbers of SULTs did not change, except for SULT1A1. A generally high degree of correlations was observed between SULT activities and protein amounts (r2 ≥ 0.59 except one), whereas a low degree of correlations was observed between SULT activities and mRNA expression levels (r2 ≤ 0.48 except one). HCC reduced the SULT activities via impaired protein amounts. LC-MS/MS quantification of SULTs is highly reliable measurement of SULT activities, and may be adopted for implementing precision medicine with respect to drugs mainly metabolized by SULTs in healthy and HCC patients.


Assuntos
Cromatografia Líquida , Fígado/enzimologia , Sulfotransferases/química , Espectrometria de Massas em Tandem , Adulto , Idoso , Biomarcadores , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ativação Enzimática , Expressão Gênica , Voluntários Saudáveis , Humanos , Cinética , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Medicina de Precisão/métodos , Sulfotransferases/genética , Sulfotransferases/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-23864901

RESUMO

Aconitum, widely used to treat rheumatoid arthritis for thousands of years, is a toxic herb that can frequently cause fatal cardiac poisoning. Aconitum toxicity could be decreased by properly hydrolyzing diester-diterpene alkaloids into monoester-diterpene alkaloids. Monoester-diterpene alkaloids, including benzoylaconine (BAC), benzoylmesaconine (BMA), and benzoylhypaconine (BHA), are the primary active and toxic constituents of processed Aconitum. Cytochrome P450 (CYP) enzymes protect the human body by functioning as the defense line that limits the invasion of toxicants. Our purposes were to identify the CYP metabolites of BAC, BMA, and BHA in human liver microsomes and to distinguish which isozymes are responsible for their metabolism through the use of chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzyme. High-resolution mass spectrometry was used to characterize the metabolites. A total of 7, 8, and 9 metabolites were detected for BAC, BMA, and BHA, respectively. The main metabolic pathways were demethylation, dehydrogenation, demethylation-dehydrogenation, hydroxylation and didemethylation, which produced less toxic metabolites by decomposing the group responsible for the toxicity of the parent compound. Taken together, the results of the chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzymes experiments demonstrated that CYP3A4 and CYP3A5 have essential functions in the metabolism of BAC, BMA, and BHA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA