Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
bioRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293107

RESUMO

Infections with the pathogenic free-living amoebae Naegleria fowleri can lead to life-threatening illnesses including catastrophic primary amebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen. Recently, human enolase 2 (ENO2) phosphonate inhibitors have been developed as lead agents to treat glioblastoma multiforme (GBM). These compounds, which cure GBM in a rodent model, are well-tolerated in mammals because enolase 1 (ENO1) is the predominant isoform used systemically. Here, we describe findings that demonstrate that these agents are potent inhibitors of N. fowleri ENO ( Nf ENO) and are lethal to amoebae. In particular, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX) was a potent enzyme inhibitor (IC 50 value of 0.14 ± 0.04 µM) that was toxic to trophozoites (EC 50 value of 0.21 ± 0.02 µM) while the reported CC 50 was >300 µM. Molecular docking simulation revealed that HEX binds strongly to the active site of Nf ENO with a binding affinity of -8.6 kcal/mol. Metabolomic studies of parasites treated with HEX revealed a 4.5 to 78-fold accumulation of glycolytic intermediates upstream of Nf ENO. Last, nasal instillation of HEX increased longevity of amoebae-infected rodents. Two days after infection, animals were treated for 10 days with 3 mg/kg HEX, followed by one week of observation. At the conclusion of the experiment, eight of 12 HEX-treated animals remained alive (resulting in an indeterminable median survival time) while one of 12 vehicle-treated rodents remained, yielding a median survival time of 10.9 days. Brains of six of the eight survivors were positive for amoebae, suggesting the agent at the tested dose suppressed, but did not eliminate, infection. These findings suggest that HEX is a promising lead for the treatment of PAM.

3.
Pathogens ; 12(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38003754

RESUMO

Glucose metabolism is critical for the African trypanosome, Trypanosoma brucei, serving as the lone source of ATP production for the bloodstream form (BSF) parasite in the glucose-rich environment of the host blood. Recently, phosphonate inhibitors of human enolase (ENO), the enzyme responsible for the interconversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP) in glycolysis or PEP to 2-PG in gluconeogenesis, have been developed for the treatment of glioblastoma multiforme (GBM). Here, we have tested these agents against T. brucei ENO (TbENO) and found the compounds to be potent enzyme inhibitors and trypanocides. For example, (1-hydroxy-2-oxopyrrolidin-3-yl) phosphonic acid (deoxy-SF2312) was a potent enzyme inhibitor (IC50 value of 0.60 ± 0.23 µM), while a six-membered ring-bearing phosphonate, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX), was less potent (IC50 value of 2.1 ± 1.1 µM). An analog with a larger seven-membered ring, (1-hydroxy-2-oxoazepan-3-yl) phosphonic acid (HEPTA), was not active. Molecular docking simulations revealed that deoxy-SF2312 and HEX had binding affinities of -6.8 and -7.5 kcal/mol, respectively, while the larger HEPTA did not bind as well, with a binding of affinity of -4.8 kcal/mol. None of these compounds were toxic to BSF parasites; however, modification of enzyme-active phosphonates through the addition of pivaloyloxymethyl (POM) groups improved activity against T. brucei, with POM-modified (1,5-dihydroxy-2-oxopyrrolidin-3-yl) phosphonic acid (POMSF) and POMHEX having EC50 values of 0.45 ± 0.10 and 0.61 ± 0.08 µM, respectively. These findings suggest that HEX is a promising lead against T. brucei and that further development of prodrug HEX analogs is warranted.

4.
ACS Pharmacol Transl Sci ; 6(2): 245-252, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798479

RESUMO

Metabolically labile prodrugs can experience stark differences in catabolism incurred by the chosen route of administration. This is especially true for phosph(on)ate prodrugs, in which successive promoiety removal transforms a lipophilic molecule into increasingly polar compounds. We previously described a phosphonate inhibitor of enolase (HEX) and its bis-pivaloyloxymethyl ester prodrug (POMHEX) capable of eliciting strong tumor regression in a murine model of enolase 1 (ENO1)-deleted glioblastoma following parenteral administration. Here, we characterize the pharmacokinetics and pharmacodynamics of these enolase inhibitors in vitro and in vivo after oral and parenteral administration. In support of the historical function of lipophilic prodrugs, the bis-POM prodrug significantly improves cell permeability of and rapid hydrolysis to the parent phosphonate, resulting in rapid intracellular loading of peripheral blood mononuclear cells in vitro and in vivo. We observe the influence of intracellular trapping in vivo on divergent pharmacokinetic profiles of POMHEX and its metabolites after oral and parenteral administration. This is a clear demonstration of the tissue reservoir effect hypothesized to explain phosph(on)ate prodrug pharmacokinetics but has heretofore not been explicitly demonstrated.

6.
Viruses ; 14(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366527

RESUMO

Feline infectious peritonitis (FIP) is a fatal disease of cats that currently lacks licensed and affordable vaccines or antiviral therapeutics. The disease has a spectrum of clinical presentations including an effusive ("wet") form and non-effusive ("dry") form, both of which may be complicated by neurologic or ocular involvement. The feline coronavirus (FCoV) biotype, termed feline infectious peritonitis virus (FIPV), is the etiologic agent of FIP. The objective of this study was to determine and compare the in vitro antiviral efficacies of the viral protease inhibitors GC376 and nirmatrelvir and the nucleoside analogs remdesivir (RDV), GS-441524, molnupiravir (MPV; EIDD-2801), and ß-D-N4-hydroxycytidine (NHC; EIDD-1931). These antiviral agents were functionally evaluated using an optimized in vitro bioassay system. Antivirals were assessed as monotherapies against FIPV serotypes I and II and as combined anticoronaviral therapies (CACT) against FIPV serotype II, which provided evidence for synergy for selected combinations. We also determined the pharmacokinetic properties of MPV, GS-441524, and RDV after oral administration to cats in vivo as well as after intravenous administration of RDV. We established that orally administered MPV at 10 mg/kg, GS-441524 and RDV at 25 mg/kg, and intravenously administered RDV at 7 mg/kg achieves plasma levels greater than the established corresponding EC50 values, which are sustained over 24 h for GS-441514 and RDV.


Assuntos
Coronavirus Felino , Peritonite Infecciosa Felina , Gatos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Bioensaio
7.
J Med Chem ; 65(20): 13813-13832, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36251833

RESUMO

Cancers harboring homozygous deletion of the glycolytic enzyme enolase 1 (ENO1) are selectively vulnerable to inhibition of the paralogous isoform, enolase 2 (ENO2). A previous work described the sustained tumor regression activities of a substrate-competitive phosphonate inhibitor of ENO2, 1-hydroxy-2-oxopiperidin-3-yl phosphonate (HEX) (5), and its bis-pivaloyoxymethyl prodrug, POMHEX (6), in an ENO1-deleted intracranial orthotopic xenograft model of glioblastoma [Nature Metabolism 2020, 2, 1423-1426]. Due to poor pharmacokinetics of bis-ester prodrugs, this study was undertaken to identify potential non-esterase prodrugs for further development. Whereas phosphonoamidate esters were efficiently bioactivated in ENO1-deleted glioma cells, McGuigan prodrugs were not. Other strategies, including cycloSal and lipid prodrugs of 5, exhibited low micromolar IC50 values in ENO1-deleted glioma cells and improved stability in human serum over 6. The activity of select prodrugs was also probed using the NCI-60 cell line screen, supporting its use to examine the relationship between prodrugs and cell line-dependent bioactivation.


Assuntos
Glioblastoma , Glioma , Organofosfonatos , Pró-Fármacos , Humanos , Pró-Fármacos/uso terapêutico , Pró-Fármacos/farmacocinética , Organofosfonatos/farmacologia , Homozigoto , Deleção de Sequência , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Glioblastoma/tratamento farmacológico , Ésteres , Lipídeos , Proteínas de Ligação a DNA , Biomarcadores Tumorais , Proteínas Supressoras de Tumor/genética
8.
Anal Chem ; 94(28): 10045-10053, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35792073

RESUMO

The phosphonate group is a key pharmacophore in many antiviral, antimicrobial, and antineoplastic drugs. Due to its high polarity and short retention time, detecting and quantifying such phosphonate-containing drugs with LC/MS-based methods are challenging and require derivatization with hazardous reagents. Given the emerging importance of phosphonate-containing drugs, developing a practical, accessible, and safe method for their quantitation in pharmacokinetics (PK) studies is desirable. NMR-based methods are often employed in drug discovery but are seldom used for compound quantitation in PK studies. Here, we show that proton-phosphorous (1H-31P) heteronuclear single quantum correlation (HSQC) NMR allows for the quantitation of the phosphonate-containing enolase inhibitor HEX in plasma and tissues at micromolar concentrations. Although mice were shown to rapidly clear HEX from circulation (over 95% in <1 h), the plasma half-life of HEX was more than 1 h in rats and nonhuman primates. This slower clearance rate affords a significantly higher exposure of HEX in rat models compared to that in mouse models while maintaining a favorable safety profile. Similar results were observed for the phosphonate-containing antibiotic, fosfomycin. Our study demonstrates the applicability of the 1H-31P HSQC method to quantify phosphonate-containing drugs in complex biological samples and illustrates an important limitation of mice as preclinical model species for phosphonate-containing drugs.


Assuntos
Antineoplásicos , Organofosfonatos , Animais , Antineoplásicos/farmacocinética , Antivirais , Camundongos , Organofosfonatos/química , Primatas , Prótons , Ratos
9.
ACS Med Chem Lett ; 13(4): 520-523, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450350

RESUMO

Remdesivir (GS-5734) is a monophenol, 2-ethylbutylalanine phosphoramidate prodrug of GS-441524 that is FDA-approved for the treatment of patients hospitalized for COVID-19. Despite showing strong, broad-spectrum antiviral activity in preclinical models, the clinical efficacy of remdesivir is mixed. This work highlights the pharmacodynamic discordance of remdesivir between humans and non-human primates, thereby demonstrating that non-human primate disease models overestimate the therapeutic efficacy of phosphoramidate prodrugs.

10.
Cell Metab ; 33(12): 2380-2397.e9, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879239

RESUMO

Accelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis. Notably, NEAT1 is upregulated in cancer patients and correlates with high levels of these complexes, and genetic and pharmacological blockade of penultimate glycolysis ablates NEAT1-dependent tumorigenesis. Finally, we demonstrate that Pinin mediates glucose-stimulated nuclear export of NEAT1, through which it exerts isoform-specific and paraspeckle-independent functions. These findings establish a direct role for NEAT1 in regulating tumor metabolism, provide new insights into the Warburg effect, and identify potential targets for therapy.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Camundongos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Front Cell Infect Microbiol ; 11: 730413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604112

RESUMO

Glycolysis controls cellular energy, redox balance, and biosynthesis. Antiglycolytic therapies are under investigation for treatment of obesity, cancer, aging, autoimmunity, and microbial diseases. Interrupting glycolysis is highly valued as a therapeutic strategy, because glycolytic disruption is generally tolerated in mammals. Unfortunately, anemia is a known dose-limiting side effect of these inhibitors and presents a major caveat to development of antiglycolytic therapies. We developed specific inhibitors of enolase - a critical enzyme in glycolysis - and validated their metabolic and cellular effects on human erythrocytes. Enolase inhibition increases erythrocyte susceptibility to oxidative damage and induces rapid and premature erythrocyte senescence, rather than direct hemolysis. We apply our model of red cell toxicity to address questions regarding erythrocyte glycolytic disruption in the context of Plasmodium falciparum malaria pathogenesis. Our study provides a framework for understanding red blood cell homeostasis under normal and disease states and clarifies the importance of erythrocyte reductive capacity in malaria parasite growth.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Antimaláricos/farmacologia , Eritrócitos , Glicólise , Humanos , Plasmodium falciparum
13.
Nat Commun ; 12(1): 4228, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244484

RESUMO

Homozygous deletion of methylthioadenosine phosphorylase (MTAP) in cancers such as glioblastoma represents a potentially targetable vulnerability. Homozygous MTAP-deleted cell lines in culture show elevation of MTAP's substrate metabolite, methylthioadenosine (MTA). High levels of MTA inhibit protein arginine methyltransferase 5 (PRMT5), which sensitizes MTAP-deleted cells to PRMT5 and methionine adenosyltransferase 2A (MAT2A) inhibition. While this concept has been extensively corroborated in vitro, the clinical relevance relies on exhibiting significant MTA accumulation in human glioblastoma. In this work, using comprehensive metabolomic profiling, we show that MTA secreted by MTAP-deleted cells in vitro results in high levels of extracellular MTA. We further demonstrate that homozygous MTAP-deleted primary glioblastoma tumors do not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma. These findings highlight metabolic discrepancies between in vitro models and primary human tumors that must be considered when developing strategies for precision therapies targeting glioblastoma with homozygous MTAP deletion.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/patologia , Desoxiadenosinas/metabolismo , Glioblastoma/genética , Purina-Núcleosídeo Fosforilase/deficiência , Tionucleosídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Desoxiadenosinas/análise , Feminino , Secções Congeladas , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Homozigoto , Humanos , Metabolômica , Metionina Adenosiltransferase/metabolismo , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Deleção de Sequência , Tionucleosídeos/análise , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Antimicrob Agents Chemother ; 65(10): e0111721, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34252308

RESUMO

Remdesivir is a nucleoside monophosphoramidate prodrug that has been FDA approved for coronavirus disease 2019 (COVID-19). However, the clinical efficacy of remdesivir for COVID-19 remains contentious, as several trials have not found statistically significant differences in either time to clinical improvement or mortality between remdesivir-treated and control groups. Similarly, the inability of remdesivir to provide a clinically significant benefit above other investigational agents in patients with Ebola contrasts with strong, curative preclinical data generated in rhesus macaque models. For both COVID-19 and Ebola, significant discordance between the robust preclinical data and remdesivir's lackluster clinical performance have left many puzzled. Here, we critically evaluate the assumptions of the models underlying remdesivir's promising preclinical data and show that such assumptions overpredict efficacy and minimize toxicity of remdesivir in humans. Had the limitations of in vitro drug efficacy testing and species differences in drug metabolism been considered, the underwhelming clinical performance of remdesivir for both COVID-19 and Ebola would have been fully anticipated.


Assuntos
Tratamento Farmacológico da COVID-19 , Doença pelo Vírus Ebola , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Macaca mulatta , SARS-CoV-2 , Resultado do Tratamento
15.
bioRxiv ; 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34100016

RESUMO

Despite being FDA-approved for COVID-19, the clinical efficacy of remdesivir (Veklury®) remains contentious. We previously pointed out pharmacokinetic, pharmacodynamic and toxicology reasons for why its parent nucleoside GS-441524, is better suited for COVID-19 treatment. Here, we assess the oral bioavailability of GS-441524 in beagle dogs and show that plasma concentrations ~24-fold higher than the EC50 against SARS-CoV-2 are easily and safely sustained. These data support translation of GS-441524 as an oral agent for COVID-19.

18.
Bioorg Med Chem Lett ; 30(24): 127656, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130289

RESUMO

Phosphate and phosphonates containing a single PN bond are frequently used pro-drug motifs to improve cell permeability of these otherwise anionic moieties. Upon entry into the cell, the PN bond is cleaved by phosphoramidases to release the active agent. Here, we apply a novel mono-amidation strategy to our laboratory's phosphonate-containing glycolysis inhibitor and show that a diverse panel of phosphonoamidates may be rapidly generated for in vitro screening. We show that, in contrast to the canonical l-alanine or benzylamine moieties which have previously been reported as efficacious pro-drug moieties, small and long-chain aliphatic amines demonstrate greater drug release efficacy for our phosphonate inhibitor. These results expand the scope of possible amine pro-drugs that can be used as second pro-drug leave groups for phosphate or phosphonate-containing drugs.


Assuntos
Aminas/química , Hidrocarbonetos/química , Organofosfatos/química , Organofosfonatos/química , Pró-Fármacos/química , Amidas/química
19.
Nat Metab ; 2(12): 1413-1426, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230295

RESUMO

Inhibiting glycolysis remains an aspirational approach for the treatment of cancer. We have previously identified a subset of cancers harbouring homozygous deletion of the glycolytic enzyme enolase (ENO1) that have exceptional sensitivity to inhibition of its redundant paralogue, ENO2, through a therapeutic strategy known as collateral lethality. Here, we show that a small-molecule enolase inhibitor, POMHEX, can selectively kill ENO1-deleted glioma cells at low-nanomolar concentrations and eradicate intracranial orthotopic ENO1-deleted tumours in mice at doses well-tolerated in non-human primates. Our data provide an in vivo proof of principle of the power of collateral lethality in precision oncology and demonstrate the utility of POMHEX for glycolysis inhibition with potential use across a range of therapeutic settings.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fosfopiruvato Hidratase/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular Tumoral , Feminino , Glioma/tratamento farmacológico , Glicólise/efeitos dos fármacos , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos SCID , Fosfopiruvato Hidratase/genética , Medicina de Precisão , Deleção de Sequência , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
20.
ACS Infect Dis ; 6(11): 3064-3075, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33118347

RESUMO

With the rising prevalence of multidrug resistance, there is an urgent need to develop novel antibiotics. Many putative antibiotics demonstrate promising in vitro potency but fail in vivo due to poor drug-like qualities (e.g., serum half-life, oral absorption, solubility, and toxicity). These drug-like properties can be modified through the addition of chemical protecting groups, creating "prodrugs" that are activated prior to target inhibition. Lipophilic prodrugging techniques, including the attachment of a pivaloyloxymethyl group, have garnered attention for their ability to increase cellular permeability by masking charged residues and the relative ease of the chemical prodrugging process. Unfortunately, pivaloyloxymethyl prodrugs are rapidly activated by human sera, rendering any membrane permeability qualities absent during clinical treatment. Identification of the bacterial prodrug activation pathway(s) will allow for the development of host-stable and microbe-targeted prodrug therapies. Here, we use two zoonotic staphylococcal species, Staphylococcus schleiferi and S. pseudintermedius, to establish the mechanism of carboxy ester prodrug activation. Using a forward genetic screen, we identify a conserved locus in both species encoding the enzyme hydroxyacylglutathione hydrolase (GloB), whose loss-of-function confers resistance to carboxy ester prodrugs. We enzymatically characterize GloB and demonstrate that it is a functional glyoxalase II enzyme, which has the capacity to activate carboxy ester prodrugs. As GloB homologues are both widespread and diverse in sequence, our findings suggest that GloB may be a useful mechanism for developing species- or genus-level prodrug targeting strategies.


Assuntos
Pró-Fármacos , Antibacterianos/farmacologia , Ésteres , Humanos , Pró-Fármacos/farmacologia , Staphylococcus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA