Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
bioRxiv ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39131283

RESUMO

Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here, we scanned newborn to 6-month-old infants and adults and used a data-driven approach to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity, and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, and parietal, and somatosensory cortex, and increases to lateral prefrontal cortex. Additionally, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data have important implications for theories of cortical functional development and open new possibilities for understanding typical and atypical white matter development.

2.
Nephrology (Carlton) ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134509

RESUMO

AIM: This study aimed to explore the value of ultrasound (US) images in chronic kidney disease (CKD) screening by constructing a CKD screening model based on grey-scale US images. METHODS: According to the CKD diagnostic criteria, 1049 patients from Tongde Hospital of Zhejiang Province were retrospectively enrolled in the study. A total of 4365 renal US images were collected from these patients. Convolutional neural networks were used for feature extractions and a screening model was constructed by fusing ResNet34 and texture features to identify CKD and its stage. A comparative analysis was performed to compare the diagnosis results of the model with physicians. RESULTS: When diagnosing CKD or non-CKD, the receiver operating characteristic curve (AUC) of our model was 0.918 and that of the senior physician group was 0.869 (p < .05). For the diagnosis of CKD stage, the AUC of our model for CKD G1-G3 was 0.781, 0.880, and 0.905, respectively, while the AUC of the senior physician group for CKD G1-G3 was 0.506, 0.586, and 0.796, respectively; all differences were statistically significant (p < .05). The diagnostic efficiency of our model for CKD G4 and G5 reached the level of the senior physicians group. Specifically, the AUC of our model for CKD G4-G5 was 0.867 and 0.931, respectively, while the AUC of the senior physician group for CKD G4-G5 was 0.838 and 0.963, respectively (all p > .05). CONCLUSIONS: Our deep learning radiomics model is more effective than senior physicians in the diagnosis of early CKD.

3.
Mol Neurobiol ; 61(2): 772-782, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37659038

RESUMO

Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction secondary to body infection without overt central nervous system infection. Dysregulation of miRNA expression in the transcriptome can spread through RNA transfer in exosomes, providing an early signal of impending neuropathological changes in the brain. Here, we comprehensively analyzed brain-derived exosomal miRNA profiles in SAE rats (n = 3) and controls (n = 3). We further verified the differential expression and correlation of brain tissue, cerebrospinal fluid, and plasma exosomal miRNAs in SAE rats. High-throughput sequencing of brain-derived exosomal miRNAs identified 101 differentially expressed miRNAs, of which 16 were downregulated and 85 were upregulated. Four exosomal miRNAs (miR-127-3p, miR-423-3p, mR-378b, and miR-106-3p) were differentially expressed and correlated in the brain tissue, cerebrospinal fluid, and plasma, revealing the potential use of miRNAs as SAE liquid brain biopsies. Understanding exosomal miRNA profiles in SAE brain tissue and exploring the correlation with peripheral exosomal miRNA can contribute to a comprehensive understanding of miRNA changes in the SAE pathological process and provide the possibility of establishing early diagnostic assays.


Assuntos
Exossomos , MicroRNAs , Encefalopatia Associada a Sepse , Ratos , Animais , Encefalopatia Associada a Sepse/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Encéfalo/metabolismo , Transcriptoma/genética
4.
Magn Reson Med ; 91(6): 2278-2293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38156945

RESUMO

PURPOSE: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. METHODS: We developed 3D visualization of short transverse relaxation time component (ViSTa)-MRF, which combined ViSTa technique with MR fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multicompartment fitting that could introduce bias and/or noise from additional assumptions or priors. RESULTS: The in vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in vivo results of 1 mm- and 0.66 mm-isotropic resolution datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30× slower with lower SNR. Furthermore, we applied the proposed method to enable 5-min whole-brain 1 mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. CONCLUSIONS: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1 and 0.66 mm isotropic resolution in 5 and 15 min, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.


Assuntos
Bainha de Mielina , Água , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
5.
Neuropsychologia ; 190: 108705, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37839512

RESUMO

Neuroimaging and intracranial electrophysiological studies have consistently shown the largest and most consistent face-selective neural activity in the middle portion of the human right lateral fusiform gyrus ('fusiform face area(s)', FFA). Yet, direct evidence for the critical role of this region in face identity recognition (FIR) is still lacking. Here we report the first evidence of transient behavioral impairment of FIR during focal electrical stimulation of the right FFA. Upon stimulation of an electrode contact within this region, subject CJ, who shows typical FIR ability outside of stimulation, was transiently unable to point to pictures of famous faces among strangers and to match pictures of famous or unfamiliar faces presented simultaneously for their identity. Her performance at comparable tasks with other visual materials (written names, pictures of buildings) remained unaffected by stimulation at the same location. During right FFA stimulation, CJ consistently reported that simultaneously presented faces appeared as being the same identity, with little or no distortion of the spatial face configuration. Independent electrophysiological recordings showed the largest neural face-selective and face identity activity at the critical electrode contacts. Altogether, this extensive multimodal case report supports the causal role of the right FFA in FIR.


Assuntos
Reconhecimento Facial , Prosopagnosia , Feminino , Humanos , Reconhecimento Visual de Modelos/fisiologia , Imageamento por Ressonância Magnética/métodos , Reconhecimento Facial/fisiologia , Lobo Temporal , Estimulação Elétrica , Estimulação Luminosa/métodos , Mapeamento Encefálico
6.
Nat Commun ; 14(1): 5661, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704636

RESUMO

Faces are critical for social interactions and their recognition constitutes one of the most important and challenging functions of the human brain. While neurons responding selectively to faces have been recorded for decades in the monkey brain, face-selective neural activations have been reported with neuroimaging primarily in the human midfusiform gyrus. Yet, the cellular mechanisms producing selective responses to faces in this hominoid neuroanatomical structure remain unknown. Here we report single neuron recordings performed in 5 human subjects (1 male, 4 females) implanted with intracerebral microelectrodes in the face-selective midfusiform gyrus, while they viewed pictures of familiar and unknown faces and places. We observed similar responses to faces and places at the single cell level, but a significantly higher number of neurons responding to faces, thus offering a mechanistic account for the face-selective activations observed in this region. Although individual neurons did not respond preferentially to familiar faces, a population level analysis could consistently determine whether or not the faces (but not the places) were familiar, only about 50 ms after the initial recognition of the stimuli as faces. These results provide insights into the neural mechanisms of face processing in the human brain.


Assuntos
Glândulas Endócrinas , Reconhecimento Facial , Feminino , Humanos , Masculino , Neurônios , Encéfalo , Córtex Cerebral
7.
ACS Appl Mater Interfaces ; 15(39): 46440-46448, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37725344

RESUMO

Flexible piezoresistive sensors are core components of many wearable devices to detect deformation and motion. However, it is still a challenge to conveniently prepare high-precision sensors using natural materials and identify similar short vibration signals. In this study, inspired by microstructures of human skins, biomass flexible piezoresistive sensors were prepared by assembling two wrinkled surfaces of konjac glucomannan and k-carrageenan composite hydrogel. The wrinkle structures were conveniently created by hardness gradient-induced surface buckling and coated with MXene sheets to capture weak pressure signals. The sensor was applied to detect various slight body movements, and a machine learning method was used to enhance the identification of similar and short throat vibration signals. The results showed that the sensor exhibited a high sensitivity of 5.1 kPa-1 under low pressure (50 Pa), a fast response time (104 ms), and high stability over 100 cycles. The XGBoost machine learning model accurately distinguished short voice vibrations similar to those of individual English letters. Moreover, experiments and numerical simulations were carried out to reveal the mechanism of the wrinkle structure preparation and the excellent sensing performance. This biomass sensor preparation and the machine learning method will promote the optimization and application of wearable devices.

8.
Sci Rep ; 13(1): 16294, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770466

RESUMO

Human adults associate different views of an identity much better for familiar than for unfamiliar faces. However, a robust and consistent neural index of this behavioral face identity familiarity effect (FIFE)-not found in non-human primate species-is lacking. Here we provide such a neural FIFE index, measured implicitly and with one fixation per face. Fourteen participants viewed 70 s stimulation sequences of a large set (n = 40) of widely variable natural images of a face identity at a rate of 6 images/second (6 Hz). Different face identities appeared every 5th image (1.2 Hz). In a sequence, face images were either familiar (i.e., famous) or unfamiliar, participants performing a non-periodic task unrelated to face recognition. The face identity recognition response identified at 1.2 Hz over occipital-temporal regions in the frequency-domain electroencephalogram was 3.4 times larger for familiar than unfamiliar faces. The neural response to familiar faces-which emerged at about 180 ms following face onset-was significant in each individual but a case of prosopdysgnosia. Besides potential clinical and forensic applications to implicitly measure one's knowledge of a face identity, these findings open new perspectives to clarify the neurofunctional source of the FIFE and understand the nature of human face identity recognition.


Assuntos
Reconhecimento Facial , Reconhecimento Psicológico , Adulto , Humanos , Reconhecimento Psicológico/fisiologia , Eletroencefalografia , Reconhecimento Facial/fisiologia , Lobo Temporal/fisiologia , Lobo Occipital , Estimulação Luminosa , Reconhecimento Visual de Modelos/fisiologia
9.
ArXiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38196746

RESUMO

Purpose: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. Methods: We developed 3D ViSTa-MRF, which combined Visualization of Short Transverse relaxation time component (ViSTa) technique with MR Fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multi-compartment fitting that could introduce bias and/or noise from additional assumptions or priors. Results: The in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in-vivo results of 1mm- and 0.66mm-iso datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30x slower with lower SNR. Furthermore, we applied the proposed method to enable 5-minute whole-brain 1mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. Conclusions: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1mm and 0.66mm isotropic resolution in 5 and 15 minutes, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.

10.
Ann Transl Med ; 10(20): 1147, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36388809

RESUMO

Background: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease. Patients with SLE presenting sudden vision lost with intracranial and intrathoracic space-occupying lesions are distinctly rare clinically. People may be simply consider this multiple damages with disease activity. The process of differential diagnosis requires rigour and efficiency in both its thoroughness and efficiency. Because of their immunosuppressive state, patients with SLE are susceptible to infection than general population, which may be misdiagnosed as immune disorder. Case Description: In this article, we present a case of 40-year-old woman suspected with SLE at 1.5 years ago. In December 2020, this patient experienced with high fever, lupus hepatitis and autoimmune hemolytic anemia and thrombocytopenia, for which she was administered glucocorticoids and rituximab. Her symptoms were relieved and the dosage of prednisolone were gradually reduced to 15 mg per day. In May 2021, she experienced a sudden bilateral loss of vision. Ophthalmic examination showed posterior uveitis intracranial space-occupying lesions. Contrast-enhanced head magnetic resonance imaging (MRI) and chest computed tomography (CT) both showed multiple abnormal foci. According to the past history of SLE, the ophthalmology department of the local hospital misdiagnosed as lupus encephalopathy with uveitis. Unfortunately, the patient's vision didn't improve after she received high-dose glucocorticoid therapy. The patient was then transferred to our hospital. We measured her SLEDAI-2k score which was only 0 point. According to the humoral immunity is prevalently low, infectious causes should be considered firstly. We performed lumbar puncture for her, but the next-generation sequencing (NGS) of cerebrospinal fluid did not provide a significant sign for infection. Further, we performed an emergent vitreous tap and finally confirmed by the NGS of the vitreous fluid, that it was a multi-site infection caused by disseminated aspergillosis. Following anti-infective treatment, the patient's lung and intracranial lesions were absorbed; however, her vision was not restored. Conclusions: We experienced a rare case of disseminated aspergillosis which was misdiagnosed as lupus encephalopathy. Infectious causes should always be at the top on the list of differential diagnoses when people with SLE accompanying by uveitis or multiple system damage. The bacterial culture of the vitreous fluid may aid in the diagnosis of infectious endophthalmitis.

11.
Front Immunol ; 13: 929316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958583

RESUMO

Sepsis-associated encephalopathy (SAE) is a cognitive impairment associated with sepsis that occurs in the absence of direct infection in the central nervous system or structural brain damage. Microglia are thought to be macrophages of the central nervous system, devouring bits of neuronal cells and dead cells in the brain. They are activated in various ways, and microglia-mediated neuroinflammation is characteristic of central nervous system diseases, including SAE. Here, we systematically described the pathogenesis of SAE and demonstrated that microglia are closely related to the occurrence and development of SAE. Furthermore, we comprehensively discussed the function and phenotype of microglia and summarized their activation mechanism and role in SAE pathogenesis. Finally, this review summarizes recent studies on treating cognitive impairment in SAE by blocking microglial activation and toxic factors produced after activation. We suggest that targeting microglial activation may be a putative treatment for SAE.


Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Encéfalo/patologia , Disfunção Cognitiva/patologia , Humanos , Microglia/patologia , Sepse/complicações , Sepse/patologia , Encefalopatia Associada a Sepse/patologia , Encefalopatia Associada a Sepse/terapia
12.
Artigo em Inglês | MEDLINE | ID: mdl-35845598

RESUMO

Objective: To establish a prediction model for the risk evaluation of chronic kidney disease (CKD) to guide the management and prevention of CKD. Methods: A total of 1263 patients with CKD and 1948 patients without CKD admitted to the Tongde Hospital of the Zhejiang Province from January 1, 2008, to December 31, 2018, were retrospectively analyzed. Spearman's correlation was used to analyze the relationship between CKD and laboratory parameters. XGBoost, random forest, Naive Bayes, support vector machine, and multivariate logistic regression algorithms were employed to establish prediction models for the risk evaluation of CKD. The accuracy, precision, recall, F1 score, and area under the receiver operating curve (AUC) of each model were compared. The new bidirectional encoder representations from transformers with light gradient boosting machine (MD-BERT-LGBM) model was used to process the unstructured data and transform it into researchable unstructured vectors, and the AUC was compared before and after processing. Results: Differences in laboratory parameters between CKD and non-CKD patients were observed. The neutrophil ratio and white blood cell count were significantly associated with the occurrence of CKD. The XGBoost model demonstrated the best prediction effect (accuracy = 0.9088, precision = 0.9175, recall = 0.8244, F1 score = 0.8868, AUC = 0.8244), followed by the random forest model (accuracy = 0.9020, precision = 0.9318, recall = 0.7905, F1 score = 0.581, AUC = 0.9519). Comparatively, the predictions of the Naive Bayes and support vector machine models were inferior to those of the logistic regression model. The AUC of all models was improved to some extent after processing using the new MD-BERT-LGBM model. Conclusion: The new MD-BERT-LGBM model with the inclusion of unstructured data has contributed to the higher accuracy, sensitivity, and specificity of the prediction models. Clinical features such as age, gender, urinary white blood cells, urinary red blood cells, thrombin time, serum creatinine, and total cholesterol were associated with CKD incidence.

13.
Neuroimage ; 250: 118932, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085763

RESUMO

Brain regions located between the right fusiform face area (FFA) in the middle fusiform gyrus and the temporal pole may play a critical role in human face identity recognition but their investigation is limited by a large signal drop-out in functional magnetic resonance imaging (fMRI). Here we report an original case who is suddenly unable to recognize the identity of faces when electrically stimulated on a focal location inside this intermediate region of the right anterior fusiform gyrus. The reliable transient identity recognition deficit occurs without any change of percept, even during nonverbal face tasks (i.e., pointing out the famous face picture among three options; matching pictures of unfamiliar or familiar faces for their identities), and without difficulty at recognizing visual objects or famous written names. The effective contact is associated with the largest frequency-tagged electrophysiological signals of face-selectivity and of familiar and unfamiliar face identity recognition. This extensive multimodal investigation points to the right anterior fusiform gyrus as a critical hub of the human cortical face network, between posterior ventral occipito-temporal face-selective regions directly connected to low-level visual cortex, the medial temporal lobe involved in generic memory encoding, and ventral anterior temporal lobe regions holding semantic associations to people's identity.


Assuntos
Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Reconhecimento Facial , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/fisiopatologia , Adulto , Estimulação Elétrica , Epilepsias Parciais/diagnóstico , Humanos , Masculino
14.
Cereb Cortex ; 32(8): 1560-1573, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34505130

RESUMO

At what level of spatial resolution can the human brain recognize a familiar face in a crowd of strangers? Does it depend on whether one approaches or rather moves back from the crowd? To answer these questions, 16 observers viewed different unsegmented images of unfamiliar faces alternating at 6 Hz, with spatial frequency (SF) content progressively increasing (i.e., coarse-to-fine) or decreasing (fine-to-coarse) in different sequences. Variable natural images of celebrity faces every sixth stimulus generated an objective neural index of single-glanced automatic familiar face recognition (FFR) at 1 Hz in participants' electroencephalogram (EEG). For blurry images increasing in spatial resolution, the neural FFR response over occipitotemporal regions emerged abruptly with additional cues at about 6.3-8.7 cycles/head width, immediately reaching amplitude saturation. When the same images progressively decreased in resolution, the FFR response disappeared already below 12 cycles/head width, thus providing no support for a predictive coding hypothesis. Overall, these observations indicate that rapid automatic recognition of heterogenous natural views of familiar faces is achieved from coarser visual inputs than generally thought, and support a coarse-to-fine FFR dynamics in the human brain.


Assuntos
Reconhecimento Facial , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Eletroencefalografia/métodos , Reconhecimento Facial/fisiologia , Humanos , Reconhecimento Visual de Modelos , Estimulação Luminosa , Reconhecimento Psicológico/fisiologia
15.
Front Pharmacol ; 12: 791644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899352

RESUMO

Recently, exosomal miRNAs have been reported to be associated with some diseases, and these miRNAs can be used for diagnosis and treatment. However, diagnostic biomarkers of exosomal miRNAs for ischemic stroke have rarely been studied. In the present study, we aimed to identify exosomal miRNAs that are associated with large-artery atherosclerosis (LAA) stroke, the most common subtype of ischemic stroke; to further verify their diagnostic efficiency; and to obtain promising biomarkers. High-throughput sequencing was performed on samples from 10 subjects. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed on exosomes and plasma in the discovery phase (66 subjects in total) and the validation phase (520 subjects in total). We identified 5 candidate differentially expressed miRNAs (miR-369-3p, miR-493-3p, miR-379-5p, miR-1296-5p, and miR-1277-5p) in the discovery phase according to their biological functions, 4 of which (miR-369-3p, miR-493-3p, miR-379-5p, and miR-1296-5p) were confirmed in the validation phase. These four exosomal miRNAs could be used to distinguish LAA samples from small artery occlusion (SAO) samples, LAA samples from atherosclerosis (AS) samples, and LAA samples from control samples and were superior to plasma miRNAs. In addition, composite biomarkers achieved higher area under the curve (AUC) values than single biomarkers. According to our analysis, the expression levels of exosomal miR-493-3p and miR-1296-5p were negatively correlated with the National Institutes of Health Stroke Scale (NIHSS) score. The four identified exosomal miRNAs are promising biomarkers for the diagnosis of LAA stroke, and their diagnostic efficiency is superior to that of their counterparts in plasma.

16.
Int J Nanomedicine ; 16: 4515-4526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239302

RESUMO

INTRODUCTION: Neuroregeneration is a major challenge in neuroscience for treating degenerative diseases and for repairing injured nerves. Numerous studies have shown the importance of physical stimulation for neuronal growth and development, and here we report an approach for the physical guidance of neuron orientation and neurite growth using superparamagnetic iron oxide (SPIO) nanoparticles and magnetic fields (MFs). METHODS: SPIO nanoparticles were synthesized by classic chemical co-precipitation methods and then characterized by transmission electron microscope, dynamic light scattering, and vibrating sample magnetometer. The cytotoxicity of the prepared SPIO nanoparticles and MF was determined using CCK-8 assay and LIVE/DEAD assay. The immunofluorescence images were captured by a laser scanning confocal microscopy. Cell migration was evaluated using the wound healing assay. RESULTS: The prepared SPIO nanoparticles showed a narrow size distribution, low cytotoxicity, and superparamagnetism. SPIO nanoparticles coated with poly-L-lysine could be internalized by spiral ganglion neurons (SGNs) and showed no cytotoxicity at concentrations less than 300 µg/mL. The neurite extension of SGNs was promoted after internalizing SPIO nanoparticles with or without an external MF, and this might be due to the promotion of growth cone development. It was also confirmed that SPIO can regulate cell migration and can direct neurite outgrowth in SGNs preferentially along the direction imposed by an external MF. CONCLUSION: Our results provide a fundamental understanding of the regulation of cell behaviors under physical cues and suggest alternative treatments for sensorineural hearing loss caused by the degeneration of SGNs.


Assuntos
Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Gânglio Espiral da Cóclea/citologia , Animais , Ciclo Celular/efeitos dos fármacos , Neurogênese/efeitos dos fármacos
17.
Front Cell Neurosci ; 15: 815280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185472

RESUMO

Neural stem cells (NSCs) transplantation is a promising approach for the treatment of various neurodegenerative diseases. Superparamagnetic iron oxide nanoparticles (SPIOs) are reported to modulate stem cell behaviors and are used for medical imaging. However, the detailed effects of SPIOs under the presence of static magnetic field (SMF) on NSCs are not well elucidated. In this study, it was found that SPIOs could enter the cells within 24 h, while they were mainly distributed in the lysosomes. SPIO exhibited good adhesion and excellent biocompatibility at concentrations below 500 µg/ml. In addition, SPIOs were able to promote NSC proliferation in the absence of SMF. In contrast, the high intensity of SMF (145 ± 10 mT) inhibited the expansion ability of NSCs. Our results demonstrate that SPIOs with SMF could promote NSC proliferation, which could have profound significance for tissue engineering and regenerative medicine for SPIO applications.

18.
Cortex ; 132: 281-295, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33007641

RESUMO

We present an objective and sensitive approach to measure human familiar face recognition (FFR) across variable facial identities. Twenty-six participants viewed sequences of natural images of different unfamiliar faces presented at a fixed rate of 6 Hz (i.e., 6 faces by second), with variable natural images of different famous face identities appearing periodically every 7th image (i.e., .86 Hz). Participants were unaware of the goal of the study and performed an orthogonal task. Following only seven minutes of visual stimulation, the FFR response was objectively identified in the EEG spectrum at .86 Hz and its harmonics (1.71 Hz, etc.) over bilateral occipito-temporal regions, being significant in every individual participant. When the exact same images appeared upside-down, the FFR response amplitude reduced by more than 80%, and was uncorrelated across individuals to the upright face response. The FFR for upright faces emerges between 160 and 200 msec following the famous face onset over bilateral occipito-temporal region and lasts until about 560 msec. The stimulation paradigm offers an unprecedented way to characterize rapid and automatic human face familiarity recognition across individuals, during development and clinical conditions, also providing original information about the time-course and neural basis of human FFR in temporally constrained stimulation conditions with natural images.


Assuntos
Reconhecimento Facial , Eletroencefalografia , Humanos , Reconhecimento Visual de Modelos , Estimulação Luminosa , Reconhecimento Psicológico , Lobo Temporal
19.
Cogn Neurosci ; 11(3): 143-156, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31961247

RESUMO

Highly variable natural images of the same familiar face celebrity interleaved periodically in a rapid (6 images/second) train of unfamiliar faces automatically elicit an objective electroencephalographic (EEG) response over the occipito-temporal cortex of neurotypical human adults within a few minutes. However, the extent to which this frequency-tagged response goes beyond the association of common physical features of the periodically repeated face identity remains unknown. Here we compare participants who know or do not know the very same periodically repeated face celebrity and show that long-term familiarity accounts for about 80% of the neural face identity recognition response. This familiarity advantage disappears with upside-down images. Variability in response amplitude between face identities is preserved for inverted faces and in unfamiliar participants, suggesting a contribution of within-person physical face variability and distinctiveness to about 20% of the face identity response. These observations provide the strongest difference to date in human brain response between the same famous face identities perceived as familiar or unfamiliar in an implicit task. The frequency-tagged neural response largely reflects the strengthening effect of long-term memory in the human occipito-temporal cortex, and may serve to index automatic familiar face identity recognition in individual observers.


Assuntos
Córtex Cerebral/fisiologia , Reconhecimento Facial/fisiologia , Memória de Longo Prazo/fisiologia , Reconhecimento Psicológico/fisiologia , Percepção Espacial/fisiologia , Adulto , Eletroencefalografia , Pessoas Famosas , Feminino , Humanos , Masculino , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Adulto Jovem
20.
Cell Mol Life Sci ; 77(7): 1401-1419, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31485717

RESUMO

Foxg1 is one of the forkhead box genes that are involved in morphogenesis, cell fate determination, and proliferation, and Foxg1 was previously reported to be required for morphogenesis of the mammalian inner ear. However, Foxg1 knock-out mice die at birth, and thus the role of Foxg1 in regulating hair cell (HC) regeneration after birth remains unclear. Here we used Sox2CreER/+ Foxg1loxp/loxp mice and Lgr5-EGFPCreER/+ Foxg1loxp/loxp mice to conditionally knock down Foxg1 specifically in Sox2+ SCs and Lgr5+ progenitors, respectively, in neonatal mice. We found that Foxg1 conditional knockdown (cKD) in Sox2+ SCs and Lgr5+ progenitors at postnatal day (P)1 both led to large numbers of extra HCs, especially extra inner HCs (IHCs) at P7, and these extra IHCs with normal hair bundles and synapses could survive at least to P30. The EdU assay failed to detect any EdU+ SCs, while the SC number was significantly decreased in Foxg1 cKD mice, and lineage tracing data showed that much more tdTomato+ HCs originated from Sox2+ SCs in Foxg1 cKD mice compared to the control mice. Moreover, the sphere-forming assay showed that Foxg1 cKD in Lgr5+ progenitors did not significantly change their sphere-forming ability. All these results suggest that Foxg1 cKD promotes HC regeneration and leads to large numbers of extra HCs probably by inducing direct trans-differentiation of SCs and progenitors to HCs. Real-time qPCR showed that cell cycle and Notch signaling pathways were significantly down-regulated in Foxg1 cKD mice cochlear SCs. Together, this study provides new evidence for the role of Foxg1 in regulating HC regeneration from SCs and progenitors in the neonatal mouse cochlea.


Assuntos
Transdiferenciação Celular , Cóclea/citologia , Fatores de Transcrição Forkhead/deficiência , Células Ciliadas Auditivas/citologia , Células Labirínticas de Suporte/citologia , Proteínas do Tecido Nervoso/deficiência , Animais , Animais Recém-Nascidos , Contagem de Células , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Cóclea/inervação , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Ciliadas Auditivas/ultraestrutura , Células Labirínticas de Suporte/ultraestrutura , Mecanotransdução Celular , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Células-Tronco/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA