Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5225, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890272

RESUMO

Economic productivity depends on reliable access to electricity, but the extreme shortage events of variable wind-solar systems may be strongly affected by climate change. Here, hourly reanalysis climatological data are leveraged to examine historical trends in defined extreme shortage events worldwide. We find uptrends in extreme shortage events regardless of their frequency, duration, and intensity since 1980. For instance, duration of extreme low-reliability events worldwide has increased by 4.1 hours (0.392 hours per year on average) between 1980-2000 and 2001-2022. However, such ascending trends are unevenly distributed worldwide, with a greater variability in low- and middle-latitude developing countries. This uptrend in extreme shortage events is driven by extremely low wind speed and solar radiation, particularly compound wind and solar drought, which however are strongly disproportionated. Only average 12.5% change in compound extremely low wind speed and solar radiation events may give rise to over 30% variability in extreme shortage events, despite a mere average 1.0% change in average wind speed and solar radiation. Our findings underline that wind-solar systems will probably suffer from weakened power security if such uptrends persist in a warmer future.

2.
Nat Commun ; 15(1): 2272, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480703

RESUMO

A transition away from coal power always maintains a high level of complexity as there are several overlapping considerations such as technical feasibility, economic costs, and environmental and health impacts. Here, we explore the cost-effectiveness uncertainty brought by policy implementation disturbances of different coal power phaseout and new-built strategies (i.e., the disruption of phaseout priority) in China based on a developed unit-level uncertainty assessment framework. We reveal the opportunity and risk of coal transition decisions by employing preference analysis. We find that, the uncertainty of a policy implementation might lead to potential delays in yielding the initial positive annual net benefits. For example, a delay of six years might occur when implementing the prior phaseout practice. A certain level of risk remains in the implementation of the phaseout policy, as not all strategies can guarantee the cumulative positive net benefits from 2018-2060. Since the unit-level heterogeneities shape diverse orientation of the phaseout, the decision-making preferences would remarkably alter the selection of a coal power transition strategy. More strikingly, the cost-effectiveness uncertainty might lead to missed opportunities in identifying an optimal strategy. Our results highlight the importance of minimizing the policy implementation disturbance, which helps mitigate the risk of negative benefits and strengthen the practicality of phaseout decisions.

3.
J Hazard Mater ; 426: 127795, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801311

RESUMO

Biomineralization is the key process governing the biogeochemical cycling of multivalent metals in the environment. Although some sulfate-reducing bacteria (SRB) are recently recognized to respire metal ions, the role of their extracellular proteins in the immobilization and redox transformation of antimony (Sb) remains elusive. Here, a model strain Desulfovibrio vulgaris Hildenborough (DvH) was used to study microbial extracellular proteins of functions and possible mechanisms in Sb(V) biomineralization. We found that the functional groups (N-H, CO, O-CO, NH2-R and RCOH/RCNH2) of extracellular proteins could adsorb and fix Sb(V) through electrostatic attraction and chelation. DvH could rapidly reduce Sb(V) adsorbed on the cell surface and form amorphous nanometer-sized stibnite and/or antimony trioxide, respectively with sulfur and oxygen. Proteomic analysis indicated that some extracellular proteins involved in electron transfer increased significantly (p < 0.05) at 1.8 mM Sb(V). The upregulated flavoproteins could serve as a redox shuttle to transfer electrons from c-type cytochrome networks to reduce Sb(V). Also, the upregulated extracellular proteins involved in sulfur reduction, amino acid transport and protein synthesis processes, and the downregulated flagellar proteins would contribute to a better adaption under 1.8 mM Sb(V). This study advances our understanding of how microbial extracellular proteins promote Sb biomineralization in DvH.


Assuntos
Antimônio , Desulfovibrio vulgaris , Biomineralização , Desulfovibrio vulgaris/genética , Oxirredução , Proteômica
4.
J Hazard Mater ; 411: 125094, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33486227

RESUMO

The impacts of metal(loids) on soil microbial communities are research focuses to understand nutrient cycling in heavy metal-contaminated environments. However, how antimony (Sb) and arsenic (As) contaminations synergistically affect microbially-driven ecological processes in the rhizosphere of plants is poorly understood. Here we examined the synergistic effects of Sb and As contaminations on bacterial, archaeal and fungal communities in the rhizosphere of a pioneer plant (Miscanthus sinensis) by focusing on soil carbon and nitrogen cycle. High contamination (HC) soils showed significantly lower levels of soil enzymatic activities, carbon mineralization and nitrification potential than low contamination (LC) environments. Multivariate analysis indicated that Sb and As fractions, pH and available phosphorus (AP) were the main factors affecting the structure and assembly of microbial communities, while Sb and As contaminations reduced the microbial alpha-diversity and interspecific interactions. Random forest analysis showed that microbial keystone taxa provided better predictions for soil carbon mineralization and nitrification under Sb and As contaminations. Partial least squares path modeling indicated that Sb and As contaminations could reduce the carbon mineralization and nitrification by influencing the microbial biomass, alpha-diversity and soil enzyme activities. This study enhances our understanding of microbial carbon and nitrogen cycling affected by Sb and As contaminations.


Assuntos
Antimônio/toxicidade , Arsênio , Micobioma , Poluentes do Solo , Archaea , Arsênio/análise , Arsênio/toxicidade , Carbono , Nitrificação , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
Environ Geochem Health ; 42(11): 3995-4010, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661876

RESUMO

Vetiver grass (Vetiveria zizanioides L. Nash) has a great application potential to the phytoremediation of heavy metals pollution. However, few studies explored the bioavailability and distribution of different speciations of As and Sb in V. zizanioides. This study aimed to clarify the allocation and accumulation of two inorganic species arsenic (As(III) and As(V)) and antimony (Sb(III) and Sb(V)) in V. zizanioides, to understand the self-defense mechanisms of V. zizanioides to these metal(loids) elements. Thus, an experiment was conducted under greenhouse conditions to identify distribution of As and Sb in plant roots and shoots. Antioxidant enzymes (superoxide dismutase, SOD) and changes of subcellular structures were tested to evaluate metal(loids) tolerance capacities of V. zizanioides. This study demonstrated that V. zizanioides had higher capacity to accumulate Sb than As. For Sb absorption, Sb(III) content is significantly higher than Sb(V) in tissues of V. zizanioides under all concentration levels, despite the oxidation of Sb(III) on the nutrient solution surface. Additional Sb was mainly accumulated in plant roots due to Sb immobilization by transforming it into precipitates. As was more easily transferred to aerial tissues and had low accumulation rates, probably due to its restricted uptake rather than restricted transport. In many cases, two inorganic species of As and Sb showed almost same biotoxicity to V. zizanioides estimated from its biomass, SOD activity, and MDA content as well as functional groups. In summary, the results of this study provide new insights into understanding allocation, accumulation and phytotoxicity effects of arsenic and antimony in V. zizanioides. Schematic diagram of distribution of and biochemical responses to As(III), As(V), Sb(III), and Sb(V) in tissue of V. zizanioides.


Assuntos
Antimônio/farmacocinética , Arsênio/farmacocinética , Vetiveria/efeitos dos fármacos , Antimônio/análise , Arsênio/análise , Bioacumulação , Biodegradação Ambiental , Disponibilidade Biológica , Biomassa , Vetiveria/fisiologia , Hidroponia , Malondialdeído/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA