Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 5337-5354, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284988

RESUMO

The use of electrically conductive polymers (CPs) in the development of electronic devices has attracted significant interest due to their unique intrinsic properties, which result from the synergistic combination of physicochemical properties in conventional polymers with the electronic properties of metals or semiconductors. Most conventional methods adopted for the fabrication of devices with nonplanar morphologies are still challenged by the poor ionic/electronic mobility of end products. Additive manufacturing (AM) brings about exciting prospects to the realm of CPs by enabling greater design freedom, more elaborate structures, quicker prototyping, relatively low cost, and more environmentally friendly electronic device creation. A growing variety of AM technologies are becoming available for three-dimensional (3D) printing of conductive devices, i.e., vat photopolymerization (VP), material extrusion (ME), powder bed fusion (PBF), material jetting (MJ), and lamination object manufacturing (LOM). In this review, we provide an overview of the recent research progress in the area of CPs developed for AM, which advances the design and development of future electronic devices. We consider different AM techniques, vis-à-vis, their development progress and respective challenges in printing CPs. We also discuss the material requirements and notable advances in 3D printing of CPs, as well as their potential electronic applications including wearable electronics, sensors, energy storage and conversion devices, etc. This review concludes with an outlook on AM of CPs.

2.
Polymers (Basel) ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959886

RESUMO

Self-healing polymers have received widespread attention due to their ability to repair damage autonomously and increase material stability, reliability, and economy. However, the processability of self-healing materials has yet to be studied, limiting the application of rich self-healing mechanisms. Additive manufacturing effectively improves the shortcomings of conventional processing while increasing production speed, accuracy, and complexity, offering great promise for self-healing polymer applications. This article summarizes the current self-healing mechanisms of self-healing polymers and their corresponding additive manufacturing methods, and provides an outlook on future developments in the field.

3.
J Colloid Interface Sci ; 561: 195-202, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816464

RESUMO

Potassium-ion batteries (KIBs) have been developed as an emerging electrochemical energy storage device due to the low cost and abundant resource of potassium. However, they suffer insufficient cyclability and poor rate capability caused by the large K+, severely limits their further applications. Herein, a nanonetwork-structured carbon (NNSC) is reported to address the issue. Cycling stability with very low decay rate of 0.004% per cycle over 2000 cycles and excellent rate capability (i.e., 261 mAh g-1 at 100 mA g-1 and 108 mAh g-1 at 5000 mA g-1) are achieved. The superior performance is attributed to the unique structure of NNSC, in which the three-dimensional interconnected hierarchical porous structure with hollow nanosphere as network units not only can effectively alleviate the volume expansion induced by the insertion of large K+, but also can offer fast pathways for K+ diffusion. In addition, the local graphitized carbon shell of NNSC can promote conductivity of material and reduce the resistance to K+ transportation. Thus, the NNSC has great potential in developing stable-structure and high-rate electrodes for next generation KIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA