Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Eur J Med Chem ; 261: 115852, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37801825

RESUMO

The Zika virus (ZIKV) infections remains a global health threat. However, no approved drug for treating ZIKV infection. We previously found TZY12-9, a 5'-amino NI analog, that showed anti-ZIKV activity without chemical phosphorylation. Here, a series of 5'-amino NI analogs were synthesized and evaluated. The compound XSJ2-46 exhibited potent in vitro activity without requiring chemical phosphorylation, favorable pharmacokinetic and acute toxicity profiles. Preliminary mechanisms of anti-ZIKV activity of XSJ2-46 were investigated via a series of ZIKV non-structural protein inhibition assays and host cell RNA-seq. XSJ2-46 acted at the replication stage of viral infection cycle, and exhibited reasonable inhibition of RNA-dependent RNA polymerases (RdRp) with an IC50 value of 8.78 µM, while not affecting MTase. RNA-seq analysis also revealed differential expression genes involved in cytokine and cytokine receptor pathway in ZIKV-infected U87 cells treated with XSJ2-46. Importantly, treatment with XSJ2-46 (10 mg/kg/day) significantly enhanced survival protection (70% survival) in ZIKV-infected ICR mice. Additionally, XSJ2-46 administration resulted in a significant decrease in serum levels of ZIKV viral RNA in the IFNα/ß receptor-deficient (Ifnar-/-) A129 mouse model. Therefore, the remarkable in vitro and in vivo anti-ZIKV activity of compound XSJ2-46 highlights the promising research direction of utilizing the 5'-amino NI structure skeleton for developing antiviral NIs.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico , Antivirais/química , Camundongos Endogâmicos ICR , Replicação Viral
2.
Viruses ; 14(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35746614

RESUMO

Enterovirus infections can cause hand, foot, and mouth disease (HFDM), aseptic meningitis, encephalitis, myocarditis, and acute flaccid myelitis, leading to death of infants and young children. However, no specific antiviral drug is currently available for the treatment of this type of infection. The Unites States and United Kingdom health authorities recently approved a new antiviral drug, molnupiravir, for the treatment of COVID-19. In this study, we reported that molnupiravir (EIDD-2801) and its active form, EIDD-1931, have broad-spectrum anti-enterovirus potential. Our data showed that EIDD-1931 could significantly reduce the production of EV-A71 progeny virus and the expression of EV-A71 viral protein at non-cytotoxic concentrations. The results of the time-of-addition assay suggest that EIDD-1931 acts at the post-entry step, which is in accordance with its antiviral mechanism. The intraperitoneal administration of EIDD-1931 and EIDD-2801 protected 1-day-old ICR suckling mice from lethal EV-A71 challenge by reducing the viral load in various tissues of the infected mice. The pharmacokinetics analysis indicated that the plasma drug concentration overwhelmed the EC50 for enteroviruses, suggesting the clinical potential of molnupiravir against enteroviruses. Thus, molnupiravir along with its active form, EIDD-1931, may be a promising drug candidate against enterovirus infections.


Assuntos
COVID-19 , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Animais , Antígenos Virais/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Pré-Escolar , Citidina/análogos & derivados , Enterovirus/metabolismo , Infecções por Enterovirus/tratamento farmacológico , Humanos , Hidroxilaminas , Camundongos , Camundongos Endogâmicos ICR
3.
Viruses ; 14(6)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35746699

RESUMO

Flaviviruses, represented by Zika and dengue virus (ZIKV and DENV), are widely present around the world and cause various diseases with serious consequences. However, no antiviral drugs have been clinically approved for use against them. Azelnidipine (ALP) is a dihydropyridine calcium channel blocker and has been approved for use as an antihypertensive drug. In the present study, ALP was found to show potent anti-flavivirus activities in vitro and in vivo. ALP effectively prevented the cytopathic effect induced by ZIKV and DENV and inhibited the production of viral RNA and viral protein in a dose-dependent manner. Moreover, treatment with 0.3 mg/kg of ALP protected 88.89% of mice from lethal challenge. Furthermore, using the time-of-drug-addition assay, the enzymatic inhibition assay, the molecular docking, and the surface plasmon resonance assay, we revealed that ALP acted at the replication stage of the viral infection cycle by targeting the viral RNA-dependent RNA polymerase. These findings highlight the potential for the use of ALP as an antiviral agent to combat flavivirus infections.


Assuntos
Dengue , Di-Hidropiridinas , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Ácido Azetidinocarboxílico/análogos & derivados , Dengue/tratamento farmacológico , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Flavivirus/fisiologia , Camundongos , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
4.
Eur J Med Chem ; 238: 114436, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35598412

RESUMO

Flavivirus and enterovirus can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases or even death. Since effective vaccine is currently unavailable against most of these deadly viruses, antiviral chemical drugs remain in urgent need. To meet this unmet demand, we developed a series of 10,10'-bis(trifluoromethyl) marinopyrrole A derivates bearing various substituents at C5'-positions, which exhibited impressive in vitro activities against flaviviruses (ZIKV, DENV, YFV, JEV) and enteroviruses (EV71, CA6, CA16). The lead compound 10,10'-bis(trifluoromethyl) marinopyrrole A 3 was highly effective against enteroviruses EV71 and CA16 in cultured cells, but with low inhibitory activities against flavivirus. Elaborately modified from compound 3, compounds 32 and 33 with sulfhydryl aliphatic chains were found as promising ZIKV and DENV inhibitor; pyrazine-containing compound 19 is a potent broad-spectrum flavivirus inhibitor; thiophene compound 15 exhibited prominent selective inhibitory effect against JEV-SA14, YFV-17D, in addition to broad-spectrum enterovirus inhibitory effect. These results thus suggest that the 5'-sulfhydryl derivates of 10,10'-bis(trifluoromethyl) marinopyrrole A may be promising lead compounds for the development of novel anti-flavivirus and anti-enterovirus drugs.


Assuntos
Infecções por Enterovirus , Enterovirus , Flavivirus , Infecção por Zika virus , Zika virus , Antivirais/química , Antivirais/farmacologia , Humanos , Pirróis
5.
Antiviral Res ; 202: 105325, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460703

RESUMO

Epidemics caused by flaviviruses occur globally; however, no antiviral drugs treating flaviviruses infections have yet been developed. Nafamostat (NM) is a protease inhibitor approved for pancreatitis and anti-coagulation. The anti-flavivirus potential of NM has yet to be determined. Here, utilizing in vitro and in vivo infection assays, we present that NM effectively inhibits Zika virus (ZIKV) and other flaviviruses in vitro. NM inhibited the production of ZIKV viral RNA and proteins originating from Asia and African lineage in human-, mouse- and monkey-derived cell lines and the in vivo anti-ZIKV efficacy of NM was verified. Mode-of-action analysis using time-of-drug-addition assay, infectivity inhibition assay, surface plasmon resonance assay, and molecular docking revealed that NM interacted with viral particles and blocked the early stage of infection by targeting the domain III of ZIKV envelope protein. Analysing the anti-flavivirus effects of NM-related compounds suggested that the antiviral effect depended on the unique structure of NM. These findings suggest the potential use of NM as an anti-flavivirus candidate, and a novel drug design approach targeting the flavivirus envelope protein.


Assuntos
Antivirais , Benzamidinas , Flavivirus , Guanidinas , Zika virus , Animais , Antivirais/química , Antivirais/farmacologia , Benzamidinas/química , Benzamidinas/farmacologia , Flavivirus/efeitos dos fármacos , Guanidinas/química , Guanidinas/farmacologia , Haplorrinos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral/metabolismo , Zika virus/efeitos dos fármacos
6.
Antiviral Res ; 201: 105296, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367281

RESUMO

Many viruses use the host cell division cycle to facilitate replication. Cyclin-dependent kinases (CDKs) are a group of serine/threonine kinases that play a central role in regulating cell cycle progression. However, the prospect of using CDKs for anti-influenza virus treatment remains to be elucidated. We conducted this study to investigate the potential of the CDK1 inhibitor Ro-3306 in preventing influenza virus infection and to elucidate the underlying mechanism. We showed that Ro-3306, a CDK1 inhibitor, exerts anti-influenza activity both in vitro and in vivo. Proof-of-concept studies revealed that knockdown of host CDK1 might affect the splicing of M2 viral mRNA, leading to the restriction of viral replication. Moreover, Ro-3306 directly bound to viral PB2 protein and inhibited viral RNA replication. Transcriptome analysis further revealed that Ro-3306 treatment inhibited the expression of MAPK-regulated genes, which might also contribute to the antiviral activity of Ro-3306. This study highlighted the multifunctional role of Ro-3306 as a novel anti-influenza virus agent.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Quinolinas/farmacologia , Tiazóis/farmacologia , Antivirais/farmacologia , Proteína Quinase CDC2/farmacologia , Humanos , Influenza Humana/tratamento farmacológico , Proteínas Virais/genética , Replicação Viral
7.
Antiviral Res ; 199: 105273, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35257725

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus that causes fever, hemorrhage, and multi-organ failure, with an average fatality rate of ∼40% in humans. Currently, there are no available vaccines or drugs for the treatment of Crimean-Congo hemorrhagic fever (CCHF). Favipiravir (T-705), a nucleoside analog, protects against CCHFV infection in animal models. Here, we evaluated the anti-CCHFV efficacy of several nucleoside analogs, including some well-known compounds such as remdesivir (GS-5734), EIDD-1931 and its prodrug molnupiravir (EIDD-2801), as well as a novel T-705-derived compound H44. T-705, H44, and EIDD-1931 inhibited CCHFV infection in vitro while GS-5734 had no inhibitory effect. All three nucleoside analogs functioned at the "post-entry" stage of virus infection. However, EIDD-2801 failed to protect type I interferon receptor knockout (IFNAR)-/- mice from CCHFV infection. H44, similar to T-705, conferred 100% protection to IFNAR-/- mice against lethal CCHFV challenge, even with delayed administration. This study provided in vitro and in vivo data regarding the anti-CCHFV efficacy of different nucleosides and identified a novel compound, H44, as a promising drug candidate for the treatment of CCHFV infection in vivo.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Modelos Animais de Doenças , Febre Hemorrágica da Crimeia/tratamento farmacológico , Febre Hemorrágica da Crimeia/prevenção & controle , Camundongos , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico
9.
MedComm (2020) ; 2(3): 381-401, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34766152

RESUMO

As of August 27, 2021, the ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread to over 220 countries, areas, and territories. Thus far, 214,468,601 confirmed cases, including 4,470,969 deaths, have been reported to the World Health Organization. To combat the COVID-19 pandemic, multiomics-based strategies, including genomics, transcriptomics, proteomics, and metabolomics, have been used to study the diagnosis methods, pathogenesis, prognosis, and potential drug targets of COVID-19. In order to help researchers and clinicians to keep up with the knowledge of COVID-19, we summarized the most recent progresses reported in omics-based research papers. This review discusses omics-based approaches for studying COVID-19, summarizing newly emerged SARS-CoV-2 variants as well as potential diagnostic methods, risk factors, and pathological features of COVID-19. This review can help researchers and clinicians gain insight into COVID-19 features, providing direction for future drug development and guidance for clinical treatment, so that patients can receive appropriate treatment as soon as possible to reduce the risk of disease progression.

10.
ACS Infect Dis ; 6(9): 2524-2531, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786284

RESUMO

The discovery of novel drug candidates with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) potential is critical for the control of the global COVID-19 pandemic. Artemisinin, an old antimalarial drug derived from Chinese herbs, has saved millions of lives. Artemisinins are a cluster of artemisinin-related drugs developed for the treatment of malaria and have been reported to have multiple pharmacological activities, including anticancer, antiviral, and immune modulation. Considering the reported broad-spectrum antiviral potential of artemisinins, researchers are interested in whether they could be used to combat COVID-19. We systematically evaluated the anti-SARS-CoV-2 activities of nine artemisinin-related compounds in vitro and carried out a time-of-drug-addition assay to explore their antiviral mode of action. Finally, a pharmacokinetic prediction model was established to predict the therapeutic potential of selected compounds against COVID-19. Arteannuin B showed the highest anti-SARS-CoV-2 potential with an EC50 of 10.28 ± 1.12 µM. Artesunate and dihydroartemisinin showed similar EC50 values of 12.98 ± 5.30 µM and 13.31 ± 1.24 µM, respectively, which could be clinically achieved in plasma after intravenous administration. Interestingly, although an EC50 of 23.17 ± 3.22 µM was not prominent among the tested compounds, lumefantrine showed therapeutic promise due to high plasma and lung drug concentrations after multiple dosing. Further mode of action analysis revealed that arteannuin B and lumefantrine acted at the post-entry step of SARS-CoV-2 infection. This research highlights the anti-SARS-CoV-2 potential of artemisinins and provides leading candidates for anti-SARS-CoV-2 drug research and development.


Assuntos
Antivirais/farmacologia , Artemisininas/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Animais , Antimaláricos/farmacologia , COVID-19 , Chlorocebus aethiops , Descoberta de Drogas , Reposicionamento de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Pandemias , SARS-CoV-2 , Células Vero
11.
Org Biomol Chem ; 18(31): 6155-6161, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32716466

RESUMO

The aminated mimetics of 2-keto-3-deoxy-sugar acids such as the anti-influenza clinical drugs oseltamivir (Tamiflu) and zanamivir (Relenza) are important bioactive molecules. Development of synthetic methodologies for accessing such compound collections is highly desirable. Herein, we describe a simple, catalyst-free glycal diazidation protocol enabled by visible light-driven conditions. This new method requires neither acid promoters nor transition-metal catalysts and takes place at ambient temperature within 1-2 hours. Notably, the desired transformations could be promoted by thermal conditions as well, albeit with lower efficacy compared to the light-induced conditions. Different sugar acid-derived glycal templates have been converted into a range of 2,3-diazido carbohydrate analogs by harnessing this mild and scalable approach, leading to the discovery of new antiviral agents.


Assuntos
Antivirais/farmacologia , Azidas/farmacologia , Carboidratos/farmacologia , Temperatura Alta , Luz , Rhinovirus/efeitos dos fármacos , Açúcares Ácidos/farmacologia , Zika virus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Azidas/síntese química , Azidas/química , Configuração de Carboidratos , Carboidratos/síntese química , Carboidratos/química , Testes de Sensibilidade Microbiana , Açúcares Ácidos/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-32312780

RESUMO

Seasonal and pandemic influenza causes 650,000 deaths annually in the world. The emergence of drug resistance to specific anti-influenza virus drugs such as oseltamivir and baloxavir marboxil highlights the urgency of novel anti-influenza chemical entity discovery. In this study, we report a series of novel thiazolides derived from an FDA-approved drug, nitazoxanide, with antiviral activity against influenza and a broad range of viruses. The preferred candidates 4a and 4d showed significantly enhanced anti-influenza virus potentials, with 10-fold improvement compared to results with nitazoxanide, and were effective against a variety of influenza virus subtypes including oseltamivir-resistant strains. Notably, the combination using compounds 4a/4d and oseltamivir carboxylate or zanamivir displayed synergistic antiviral effects against oseltamivir-resistant strains. Mode-of-action analysis demonstrated that compounds 4a/4d acted at the late phase of the viral infection cycle through inhibiting viral RNA transcription and replication. Further experiments showed that treatment with compounds 4a/4d significantly inhibited influenza virus infection in human lung organoids, suggesting the druggability of the novel thiazolides. In-depth transcriptome analysis revealed a series of upregulated cellular genes that may contribute to the antiviral activities of 4a/4d. Together, the results of our study indicated the direction to optimize nitazoxanide as an anti-influenza drug and discovered two candidates with novel structures, compounds 4a/4d, that have relatively broad-spectrum antiviral potentials.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral , Humanos , Influenza Humana/tratamento farmacológico , Oseltamivir/uso terapêutico , Zanamivir
13.
ACS Infect Dis ; 6(5): 832-843, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31967789

RESUMO

Flaviviruses including Zika virus, Dengue virus, Japanese Encephalitis virus, and Yellow Fever virus cause heavy burdens to public health around the world. No specific antiviral drug is available in the clinic against these flavivirus infections. Heat-shock protein 70 (HSP70) has recently been proven to be a promising antiviral target against Zika virus and Dengue virus. Here, we report that Apoptozole, a small molecule inhibitor of ATPase activity of HSP70, has broad-spectrum anti-flavivirus potential. The mode of action analysis revealed that Apoptozole acted at the post-entry step. Transcriptome analysis revealed that genes related to cholesterol metabolism, fatty acid synthesis, and innate immunity were differentially expressed after treatment with Apoptozole. In vivo data suggested Apoptozole exerted protection effects against Zika virus (ZIKV) infection in a mouse model by enhancing the innate immune response, which suggested a novel anti-ZIKV mechanism of HSP70 inhibitors.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Benzamidas/uso terapêutico , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Imidazóis/uso terapêutico , Infecção por Zika virus/tratamento farmacológico , Animais , Imunidade Inata , Camundongos
14.
Cell Rep ; 28(9): 2386-2396.e5, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461653

RESUMO

It is known that lethal viruses profoundly manipulate host metabolism, but how the metabolism alternation affects the immediate host antiviral immunity remains elusive. Here, we report that the O-GlcNAcylation of mitochondrial antiviral-signaling protein (MAVS), a key mediator of interferon signaling, is a critical regulation to activate the host innate immunity against RNA viruses. We show that O-GlcNAcylation depletion in myeloid cells renders the host more susceptible to virus infection both in vitro and in vivo. Mechanistically, we demonstrate that MAVS O-GlcNAcylation is required for virus-induced MAVS K63-linked ubiquitination, thereby facilitating IRF3 activation and IFNß production. We further demonstrate that D-glucosamine, a commonly used dietary supplement, effectively protects mice against a range of lethal RNA viruses, including human influenza virus. Our study highlights a critical role of O-GlcNAcylation in regulating host antiviral immunity and validates D-glucosamine as a potential therapeutic for virus infections.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata , Infecções por Orthomyxoviridae/imunologia , Processamento de Proteína Pós-Traducional , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Chlorocebus aethiops , Feminino , Glucosamina/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Células Mieloides/metabolismo , Células Mieloides/virologia , Transdução de Sinais , Células Vero
15.
Eur J Med Chem ; 157: 994-1004, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30170321

RESUMO

We report herein the design and synthesis of a series of novel Sinefungin (SIN) derivatives, based on the structures of SIN and its analogue EPZ004777. Our results reveal that target compounds 1ad-af, 1ba-bb and 1bf-bh show better activity (IC50 = 4.56-20.16 µM) than EPZ004777 (IC50 = 35.19 µM). Surprisingly, SIN was founded to be not as active (IC50 > 50 µM) as we and other research groups predicted. Interestingly, the intermediates 9a-b and 11b display potent anti-ZIKV potency (IC50 = 6.33-29.98 µM), and compound 9a also exhibits acceptable cytotoxicity (CC50 > 200 µM), suggesting their promising potential to be leads for further development.


Assuntos
Adenosina/análogos & derivados , Antivirais/síntese química , Antivirais/farmacologia , Desenho de Fármacos , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Zika virus/efeitos dos fármacos , Adenosina/química , Adenosina/farmacologia , Animais , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA