Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Nat Commun ; 15(1): 4236, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762595

RESUMO

Hydroxide exchange membrane fuel cells (HEMFCs) have the advantages of using cost-effective materials, but hindered by the sluggish anodic hydrogen oxidation reaction (HOR) kinetics. Here, we report an atomically dispersed Ir on Mo2C nanoparticles supported on carbon (IrSA-Mo2C/C) as highly active and stable HOR catalysts. The specific exchange current density of IrSA-Mo2C/C is 4.1 mA cm-2ECSA, which is 10 times that of Ir/C. Negligible decay is observed after 30,000-cycle accelerated stability test. Theoretical calculations suggest the high HOR activity is attributed to the unique Mo2C substrate, which makes the Ir sites with optimized H binding and also provides enhanced OH binding sites. By using a low loading (0.05 mgIr cm-2) of IrSA-Mo2C/C as anode, the fabricated HEMFC can deliver a high peak power density of 1.64 W cm-2. This work illustrates that atomically dispersed precious metal on carbides may be a promising strategy for high performance HEMFCs.

2.
Mol Med ; 30(1): 34, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448811

RESUMO

BACKGROUND: Imbalance in energy regulation is a major cause of insulin resistance and diabetes. Melanocortin-4 receptor (MC4R) signaling at specific sites in the central nervous system has synergistic but non-overlapping functions. However, the mechanism by which MC4R in the arcuate nucleus (ARC) region regulates energy balance and insulin resistance remains unclear. METHODS: The MC4Rflox/flox mice with proopiomelanocortin (POMC) -Cre mice were crossed to generate the POMC-MC4Rflox/+ mice. Then POMC-MC4Rflox/+ mice were further mated with MC4Rflox/flox mice to generate the POMC-MC4Rflox/flox mice in which MC4R is selectively deleted in POMC neurons. Bilateral injections of 200 nl of AAV-sh-Kir2.1 (AAV-sh-NC was used as control) were made into the ARC of the hypothalamus. Oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure were measured by using the CLAMS; Total, visceral and subcutaneous fat was analyzed using micro-CT. Co-immunoprecipitation assays (Co-IP) were used to analyze the interaction between MC4R and Kir2.1 in GT1-7 cells. RESULTS: POMC neuron-specific ablation of MC4R in the ARC region promoted food intake, impaired energy expenditure, leading to increased weight gain and impaired systemic glucose homeostasis. Additionally, MC4R ablation reduced the activation of POMC neuron, and is not tissue-specific for peripheral regulation, suggesting the importance of its central regulation. Mechanistically, sequencing analysis and Co-IP assay demonstrated a direct interaction of MC4R with Kir2.1. Knockdown of Kir2.1 in POMC neuron-specific ablation of MC4R restored the effect of MC4R ablation on energy expenditure and systemic glucose homeostasis, indicating by reduced body weight and ameliorated insulin resistance. CONCLUSION: Hypothalamic POMC neuron-specific knockout of MC4R affects energy balance and insulin sensitivity by regulating Kir2.1. Kir2.1 represents a new target and pathway that could be targeted in obesity.


Assuntos
Resistência à Insulina , Animais , Camundongos , Glucose , Hipotálamo , Resistência à Insulina/genética , Neurônios , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/genética
3.
J Am Chem Soc ; 145(50): 27500-27511, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056604

RESUMO

Anion-exchange membrane fuel cells (AEMFCs) are promising alternative hydrogen conversion devices. However, the sluggish kinetics of the hydrogen oxidation reaction in alkaline media hinders further development of AEMFCs. As a synthesis method commonly used to prepare disordered PtRu alloys, the impregnation process is ingeniously designed herein to synthesize sub-3 nm Pt@Ru core-shell nanoparticles by sequentially reducing Pt and Ru at different annealing temperatures. This method avoids complex procedures and synthesis conditions for organic synthesis systems, and the atomic structure evolution of the synthesized core-shell nanoparticles can be tracked. The synthesized Pt@Ru electrocatalyst shows an ultrasmall average size of ∼2.5 nm and thereby a large electrochemical surface area (ECSA) of 166.66 m2 gPt+Ru-1. Exchange current densities (j0) normalized to the mass (Pt + Ru) and ECSA of this electrocatalyst are 8.0 and 5.8 times as high as those of commercial Pt/C, respectively. To the best of our knowledge, the achieved mass-normalized j0 measured by rotating disk electrodes is the highest reported so far. The membrane electrode assembly test of the Pt@Ru electrocatalyst shows a peak power density of 1.78 W cm-2 (0.152 mgPt+Ru cmanode-2), which is higher than that of commercial PtRu/C (1.62 W cm-2, 0.211 mgPt+Ru cmanode-2). The improvement of the intrinsic activity can be attributed to the electron transfer from the Ru shell to the Pt core, and the ultrafine particles further enhance the mass activity. This work reveals the feasibility of using simple impregnation to synthesize fine core-shell nanocatalysts and the importance of investigating the atomic structure of PtRu nanoparticles and other disordered alloys.

4.
J Biol Chem ; 299(12): 105476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981207

RESUMO

Circadian rhythm disruption leads to dysregulation of lipid metabolism, which further drive the occurrence of insulin resistance (IR). Exosomes are natural carrier systems that advantageous for cell communication. In the present study, we aimed to explore whether and how the exosomal microRNAs (miRNAs) in circulation participate in modulating skeletal muscle IR induced by circadian rhythm disruption. In the present study, 24-h constant light (12-h light/12-h light, LL) was used to establish the mouse model of circadian rhythm disruption. Bmal1 interference was used to establish the cell model of circadian rhythm disruption. And in clinical experiments, we chose a relatively large group of rhythm disturbance-shift nurses. We showed that LL-induced circadian rhythm disruption led to increased body weight and visceral fat volume, as well as occurrence of IR in vivo. Furthermore, exosomal miR-22-3p derived from adipocytes in the context of circadian rhythm disruption induced by Bmal1 interference could be uptaken by skeletal muscle cells to promote IR occurrence in vitro. Moreover, miR-22-3p in circulation was positively correlated with the clinical IR-associated factors. Collectively, these data showed that exosomal miR-22-3p in circulation may act as potential biomarker and therapeutic target for skeletal muscle IR, contributing to the prevention of diabetes in the context of rhythm disturbance.


Assuntos
Ritmo Circadiano , Exossomos , Resistência à Insulina , MicroRNAs , Animais , Camundongos , Adipócitos/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo
5.
J Hepatocell Carcinoma ; 10: 1257-1266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538403

RESUMO

Background: At present, it is not known whether targeting plus immunotherapy combined with transarterial chemoembolization (TACE) can improve the efficacy of hepatocellular carcinoma (HCC). The aim of this retrospective experiment was to explore the difference in clinical efficacy between antiangiogenic drugs plus PD-1 inhibitors combined with and without TACE. Methods: Clinical data of 145 patients with HCC who received anti-angiogenesis therapy plus PD-1 inhibitor combined with TACE (TACE-P-T) (n = 62) or anti-angiogenesis therapy combined with PD-1 inhibitor (P-T) (n = 83) in China from October 2018 to December 2022 were collected and reviewed. We used propensity matching (PSM) to create two groups with comparable baseline scores, compared their median survival time (mOS) and median progression-free survival time (mPFS), and performed subgroup analysis. Results: Before PSM, the mOS and mPFS of patients were 20.3 and 5.0 months in the triple therapy group and 13.6 and 7.4 months in the control group, respectively. After PSM, the mOS and mPFS of patients were 19.7 and 6.6 months in the triple treatment group and 10.5 and 3.7 months in the control group, respectively. Therefore, the TACE-P-T group showed better survival outcomes than P-T. In the subgroup analysis, compared with the control group, the mOS was 10.7 vs 20.3 months in the alpha fetoprotein (AFP) (≥ 400ng/mL/<400ng/mL) group, 29.3 vs 7.4 months in the alkaline phosphatase (ALP) (≥ 125u/L/< 125u/L) group and 10.5 vs 20.0 months in the Portal vein invasion (PVTT) group. Conclusion: Antiangiogenic therapy combined with PD-1 inhibitors combined with TACE has significant survival benefits for HCC patients.

6.
J Cancer Res Clin Oncol ; 149(15): 14271-14282, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37561208

RESUMO

INTRODUCTION: The aim of this study was to investigate the role of thymidine kinase 1 (TK1) levels in hepatocellular carcinoma (HCC) prognosis and to develop a nomogram for predicting HCC prognosis. METHOD: In this study, 1066 HCC patients were enrolled between August 2018 and April 2022. TK1 levels were measured within one week before enrollment, and the relationship with HCC prognosis was evaluated. Next, all patients were randomly assigned to the training set (70%, n = 746) and the validation set (30%, n = 320). We used multivariate Cox analysis to find independent prognostic factors in the training set to construct a nomogram. The predictive power of the nomogram was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). The optimal critical value of TK1 was determined as 2.35 U/L using X-tile software. RESULT: Before and after propensity score matching (PSM), the median overall survival (mOS) of the low-TK1 group (< 2.35 U/L) remained significantly longer than that of the high-TK1 group (≥ 2.35 U/L) (48.1 vs 16.5 months, p < 0.001; 75.7 vs 19.8 months, p = 0.001). Moreover, multivariate Cox analysis showed that the low TK1 level was an independent positive prognostic indicator. Additionally, the area under the ROC curve for predicting the 1-year, 2-year, and 3-year survival rates was 0.770, 0.758, and 0.805, respectively. CONCLUSIONS: TK1 could serve as a prognostic marker for HCC. In addition, the nomogram showed good predictive capability for HCC prognosis.

7.
Nat Commun ; 14(1): 2384, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185242

RESUMO

The mechanism of pH-dependent hydrogen oxidation and evolution kinetics is still a matter of significant debate. To make progress, we study the Volmer step kinetics on platinum (111) using classical molecular dynamics simulations with an embedded Anderson-Newns Hamiltonian for the redox process and constant potential electrodes. We investigate how negative electrode electrostatic potential affects Volmer step kinetics. We find that the redox solvent reorganization energy is insensitive to changes in interfacial field strength. The negatively charged surface attracts adsorbed H as well as H+, increasing hydrogen binding energy, but also trapping H+ in the double layer. While more negative electrostatic potential in the double layer accelerates the oxidation charge transfer, it becomes difficult for the proton to move to the bulk. Conversely, reduction becomes more difficult because the transition state occurs farther from equilibrium solvation polarization. Our results help to clarify how the charged surface plays a role in hydrogen electrocatalysis kinetics.

8.
Diabetes Metab Syndr Obes ; 16: 1193-1205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131503

RESUMO

Background: Inflammation and oxidative stress contribute to the development of diabetic nephropathy (DN). Baicalin (BA) shows renal protection against DN through its anti-inflammatory and anti-oxidant properties. However, the molecular mechanism by which BA exerts the therapeutic effects on DN remains to be investigated. Methods: The db/db mice and high glucose (HG)-induced HK-2 cells were used as the in vivo and in vitro model of DN, respectively. The effects of BA were assessed by detecting the related blood and urine biochemical parameters, kidney histopathology, inflammatory cytokine production, oxidative stress indicators, and apoptosis. Cell viability and apoptosis were detected by CCK-8 assay and TUNEL assay, respectively. Related protein levels were measured by an immunoblotting method. Results: In db/db model mice, BA reduced serum glucose concentration, decreased blood lipid levels, ameliorated kidney functions, and decreased histopathological changes in kidney tissues. BA also alleviated oxidative stress and inflammation in db/db mice. In addition, BA blocked the activation of sphingosine kinases type 1/sphingosine 1-phosphate (SphK1/S1P)/NF-κB pathway in db/db mice. In HK-2 cells, BA hindered HG-induced apoptosis, oxidative stress and inflammation, while overexpression of SphK1 or S1P could reverse these effects. BA alleviated HG-induced apoptosis, oxidative stress and inflammation in HK-2 cells through the S1P/NF-κB pathway. Furthermore, BA blocked the NF-κB signaling by diminishing p65 nuclear translocation via the SphK1/S1P pathway. Conclusion: Our study strongly suggests that BA protects against DN via ameliorating inflammation, oxidative stress and apoptosis through the SphK1/S1P/NF-κB pathway. This study provides a novel insight into the therapeutic effects of BA in DN.

9.
Histochem Cell Biol ; 160(1): 11-25, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014442

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a classical animal model of human multiple sclerosis (MS) that is most commonly used to study the neuropathology and therapeutic effects of the disease. Telocytes (TCs) are a specialized type of interstitial or mesenchymal cell first identified by Popescu in various tissues and organs. However, the existence, distribution and role of CD34+ stromal cells (SCs)/TCs in the EAE-induced mouse spleen remain to be elucidated. We conducted immunohistochemistry, immunofluorescence (double staining for CD34 and c-kit, vimentin, F4/80, CD163, Nanog, Sca-1, CD31 or tryptase) and transmission electron microscopy experiments to investigate the existence, distribution and role of CD34+ SCs/TCs in the EAE-induced mouse spleen. Interestingly, immunohistochemistry, double-immunofluorescence, and transmission electron microscopy results revealed that CD34+ SCs/TCs were significantly upregulated in the EAE mouse spleen. Immunohistochemical or double-immunofluorescence staining of CD34+ SCs/TCs showed positive expression for CD34, c-kit, vimentin, CD34/vimentin, c-kit/vimentin and CD34/c-kit, and negative expression for CD31 and tryptase. Transmission electron microscopy (TEM) results demonstrated that CD34+ SCs/TCs established close connections with lymphocytes, reticular cells, macrophages, endothelial cells and erythrocytes. Furthermore, we also found that M1 (F4/80) or M2 (CD163) macrophages, and haematopoietic, pluripotent stem cells were markedly increased in EAE mice. Our results suggest that CD34+ SCs/TCs are abundant and may play a contributing role in modulating the immune response, recruiting macrophages and proliferation of haematopoietic and pluripotent stem cells following injury to promote tissue repair and regeneration in EAE mouse spleens. This suggests that their transplantation combined with stem cells might represent a promising therapeutic target for the treatment and prevention of multiple autoimmune and chronic inflammatory disorders.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Pluripotentes , Telócitos , Animais , Camundongos , Antígenos CD34/metabolismo , Moléculas de Adesão Celular/metabolismo , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Baço , Células Estromais/metabolismo , Telócitos/metabolismo , Telócitos/patologia , Triptases/metabolismo , Vimentina/metabolismo
10.
Front Immunol ; 14: 1298683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162672

RESUMO

Immunotherapy, notably chimeric antigen receptor (CAR) modified natural killer (NK) cell therapy, has shown exciting promise in the treatment of hematologic malignancies due to its unique advantages including fewer side effects, diverse activation mechanisms, and wide availability. However, CAR-NK cell therapies have demonstrated limited efficacy against solid tumors, primarily due to challenges posed by the solid tumor microenvironment. In contrast, radiotherapy, a well-established treatment modality, has been proven to modulate the tumor microenvironment and facilitate immune cell infiltration. With these observations, we hypothesize that a novel therapeutic strategy integrating CAR-NK cell therapy with radiotherapy could enhance the ability to treat solid tumors. This hypothesis aims to address the obstacles CAR-NK cell therapies face within the solid tumor microenvironment and explore the potential efficacy of their combination with radiotherapy. By capitalizing on the synergistic advantages of CAR-NK cell therapy and radiotherapy, we posit that this could lead to improved prognoses for patients with solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Células Matadoras Naturais , Imunoterapia Adotiva , Neoplasias/radioterapia , Imunoterapia , Microambiente Tumoral
11.
Acc Chem Res ; 55(14): 1912-1927, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35761434

RESUMO

ConspectusAs one of the most attractive members in the porous materials family, covalent organic frameworks (COFs) have been reported thousands of times since their first discovery in 2005, covering their design, synthesis, and applications. However, an overwhelming majority of these COFs are based on two-dimensional (2D) topologies while three-dimensional (3D) COFs are numbered fewer than 100 up to date. In fact, baring enhanced specific surface area, interconnected channels, well-exposed functional moieties, and highly adjustable structures, 3D COFs are often more competitive in various application fields like adsorption, separation, chemical sensing, and heterogeneous catalysis compared with their 2D counterparts. However, significant crystallization problems and poor chemical stabilities, which might be attributed to the highly void frameworks and the absence of π-π stacking, have raised severe limitations over the research and application of 3D COFs. To solve these problems, more elaborate synthesis regulations or more moderate functionalization conditions are required. More importantly, the strategies for enhancing chemical stabilities of 3D COFs are of vital importance for their further development and practical applications.In this Account, we review the design principles, functional approaches, and stability regulation methods toward functional 3D COFs. We begin the discussion with some essential elements in the construction of 3D COF structures, including topologies, interpenetrations, linkages, and synthetic methods. After that, we focus on several strategies for the functionalization of 3D COFs, including in situ approaches (utilizing in situ generated COF linkages as the active sites), bottom-up synthesis (embedding functional moieties from predesigned building blocks), and postsynthesis modification (covalent modification or metalation of pristine frameworks). At last, we highlight some approaches toward the durable amplification of 3D COFs, which is highly important for framework functionalization and practical application. This target could be achieved through not only the introduction of some extra strengthening force, such as hydrophobic effects, coulomb repulsion, and steric hindrance effects, but also the utilization of robust linkages, which could enhance the stability from material nature.Due to their high surface area, various interpenetrated channels, multifarious functionalities, and promising stabilities, 3D COFs demonstrated excellent performance and have great potential in a wide range of application fields including adsorption and separation, heterogeneous catalysis, energy storage, and so on. Although the development of these materials has been limited by serious crystallization problems and stability restriction, great efforts have been devoted by researchers in the past decade, and a mass of strategies have been developed in synthesis control, functionalization regulation, and stability enhancement for 3D COFs. We expect 3D COFs to be practically utilized in the future with further advances in the design, preparation, and functionalization of these materials.

12.
Nat Nanotechnol ; 17(6): 629-636, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35437322

RESUMO

Ion exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu2+-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM. The Cu2+ ions are coordinated with the amino and hydroxyl groups of chitosan to crosslink the chitosan chains, forming hexagonal nanochannels (~1 nm in diameter) that can accommodate water diffusion and facilitate fast ion transport, with a high hydroxide conductivity of 67 mS cm-1 at room temperature. The Cu2+ coordination also enhances the mechanical strength of the membrane, reduces its permeability and, most importantly, improves its stability in alkaline solution (only 5% conductivity loss at 80 °C after 1,000 h). These advantages make chitosan-Cu an outstanding HEM, which we demonstrate in a direct methanol fuel cell that exhibits a high power density of 305 mW cm-2. The design principle of the chitosan-Cu HEM, in which ion transport channels are generated in the polymer through metal-crosslinking of polar functional groups, could inspire the synthesis of many ion exchange membranes for ion transport, ion sieving, ion filtration and more.


Assuntos
Quitosana , Condutividade Elétrica , Hidróxidos , Troca Iônica , Membranas Artificiais
13.
Stem Cell Res Ther ; 13(1): 155, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410627

RESUMO

BACKGROUND: Immunosuppressive properties grant mesenchymal stromal cells (MSCs) promising potential for treating autoimmune diseases. As autologous MSCs suffer from limited availability, the readily available allogeneic MSCs isolated from menstrual blood (MB-MSCs) donated by young, healthy individuals offer great potential. Here, we evaluate the therapeutic potential of MB-MSCs as ready-to-use allo-MSCs in multiple sclerosis, an autoimmune disease developed by the activation of myelin sheath-reactive Th1 and Th17 cells, by application in its animal model experimental autoimmune encephalomyelitis (EAE). METHODS: We assessed the therapeutic effect of MB-MSCs transplanted via either intravenous (i.v.) or intraperitoneal (i.p.) route in EAE in comparison with umbilical cord-derived MSCs (UC-MSCs). We used histology to assess myelin sheath integrity and infiltrated immune cells in CNS and flow cytometry to evaluate EAE-associated inflammatory T cells and antigen-presenting cells in lymphoid organs. RESULTS: We observed disease-ameliorating effects of MB-MSCs when transplanted at various stages of EAE (day - 1, 6, 10, and 19), via either i.v. or i.p. route, with a potency comparable to UC-MSCs. We observed reduced Th1 and Th17 cell responses in mice that had received MB-MSCs via either i.v. or i.p. injection. The repressed Th1 and Th17 cell responses were associated with a reduced frequency of plasmacytoid dendritic cells (pDCs) and a suppressed co-stimulatory capacity of pDCs, cDCs, and B cells. CONCLUSIONS: Our data demonstrate that the readily available MB-MSCs significantly reduced the disease severity of EAE upon transplantation. Thus, they have the potential to be developed as ready-to-use allo-MSCs in MS-related inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Células Th17
14.
Nat Mater ; 21(7): 804-810, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35379980

RESUMO

The hydroxide exchange membrane fuel cell (HEMFC) is a promising energy conversion technology but is limited by the need for platinum group metal (PGM) electrocatalysts, especially for the hydrogen oxidation reaction (HOR). Here we report a Ni-based HOR catalyst that exhibits an electrochemical surface area-normalized exchange current density of 70 µA cm-2, the highest among PGM-free catalysts. The catalyst comprises Ni nanoparticles embedded in a nitrogen-doped carbon support. According to X-ray and ultraviolet photoelectron spectroscopy as well as H2 chemisorption data, the electronic interaction between the Ni nanoparticles and the support leads to balanced hydrogen and hydroxide binding energies, which are the likely origin of the catalyst's high activity. PGM-free HEMFCs employing this Ni-based HOR catalyst give a peak power density of 488 mW cm-2, up to 6.4 times higher than previous best-performing analogous HEMFCs. This work demonstrates the feasibility of efficient PGM-free HEMFCs.


Assuntos
Níquel , Platina , Hidrogênio/química , Hidróxidos , Níquel/química , Oxirredução , Platina/química
15.
Angew Chem Int Ed Engl ; 61(24): e202203584, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343628

RESUMO

The development of novel zeolite-like materials with large channel windows and high stability is of importance but remains a tremendous challenge. Herein, we report the first example of a 3D covalent organic framework with zeolitic network, namely the zeolitic organic framework (ZOF). By combining two kinds of tetrahedral building blocks with fixed or relatively free bond angles, ZOF-1 with the zeolitic crb net has been successfully synthesized. Its structure was determined by the single-crystal 3D electron diffraction technique. Remarkably, ZOF-1 shows high chemical stability, large pore size (up to 16 Å), and excellent specific surface area (≈2785 m2 g-1 ), which is superior to its analogues with the same network, including traditional aluminosilicate zeolites and zeolitic imidazole frameworks. This study thus opens a new avenue to construct zeolite-like materials with pure organic frameworks and will promote their potential applications in adsorption and catalysis for macromolecules.

16.
Angew Chem Int Ed Engl ; 61(13): e202117101, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072318

RESUMO

Owing to the finite building blocks and difficulty in structural identification, it remains a tremendous challenge to elaborately design and synthesize three-dimensional covalent organic frameworks (3D COFs) with predetermined topologies. Herein, we report the first two cases of 3D COFs with the non-interpenetrated hea net, termed JUC-596 and JUC-597, by using the combination of tetrahedral and triangular prism building units. Due to the presence of triptycene functional groups and fluorine atoms, JUC-596 exhibits an exceptional performance in the H2 adsorption up to 305 cm3 g-1 (or 2.72 wt%) at 77 K and 1 bar, which is higher than previous benchmarks from porous organic materials reported so far. Furthermore, the strong interaction between H2 and COF materials is verified through the DFT theoretical calculations. This work represents a captivating example of rational design of functional COFs based on a reticular chemistry guide and demonstrates its promising application in clean energy storage.

17.
Angew Chem Int Ed Engl ; 61(13): e202200820, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072979

RESUMO

The development of bioinspired nano/subnano-sized (<2 nm) ion channels is still considered a great challenge due to the difficulty in precisely controlling pore's internal structure and chemistry. Herein, for the first time, we report that three-dimensional functionalized covalent organic frameworks (COFs) can act as an effective nanofluidic platform for intelligent modulation of the ion transport. By strategic attachment of 12-crown-4 groups to the monomers as ion-driver door locks, we demonstrate that gating effects of functionalized COFs can be activated by lithium ions. The obtained materials exhibit an outstanding selective ion transmission performance with a high gating ratio (up to 23.6 for JUC-590), which is among the highest values in metal ion-activated solid-state nanochannels reported so far. Furthermore, JUC-590 offers high tunability, selectivity, and recyclability of ion transport proved by the experimental and simulated studies.

18.
Small ; 17(41): e2102630, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510728

RESUMO

The property expansion of 3D functionalized covalent organic frameworks (COFs) is important for developing their potential applications. Herein, the first case of 3D hydrazone-decorated COFs as pH-triggered molecular switches is reported, and their application in the stimuli-responsive drug delivery system is explored. These functionalized COFs with hydrazone groups on the channel walls are obtained via a multi-component bottom-up synthesis strategy. They exhibit a reversible E/Z isomerization at various pH values, confirmed by UV-vis absorption spectroscopy and proton conduction. Remarkably, after loading cytarabine (Ara-C) as a model drug molecule, these pH-responsive COFs show an excellent and intelligent sustained-release effect with an almost fourfold increase in the Ara-C release at pH = 4.8 than at pH = 7.4, which will effectively improve drug-targeting. Thus, these results open a way toward designing 3D stimuli-responsive functionalized COF materials and promote their potential application as drug carriers in the field of disease treatment.


Assuntos
Estruturas Metalorgânicas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Hidrazonas , Concentração de Íons de Hidrogênio
19.
Angew Chem Int Ed Engl ; 60(41): 22230-22235, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34387410

RESUMO

With excellent designability, large accessible inner surface, and high chemical stability, covalent organic frameworks (COFs) are promising candidates as metal-free heterogeneous catalysts. Here, we report two 3D radical-based COFs (JUC-565 and JUC-566) in which radical moieties (TEMPO) are uniformly decorated on the channel walls via a bottom-up approach. Based on grafted functional groups and suitable regular channels, these materials open up the application of COFs as highly efficient and selective metal-free redox catalysts in aerobic oxidation of alcohols to relevant aldehydes or ketones with outstanding turn over frequency (TOF) up to 132 h-1 , which has exceeded other TEMPO-modified catalytic materials tested under similar conditions. These stable COF-based catalysts could be easily recovered and reused for multiple runs. This study promotes potential applications of 3D functional COFs anchored with stable radicals in organic synthesis and material science.

20.
Chem Sci ; 12(24): 8452-8457, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34221327

RESUMO

To safeguard the development of nuclear energy, practical techniques for capture and storage of radioiodine are of critical importance but remain a significant challenge. Here we report the synergistic effect of physical and chemical adsorption of iodine in tetrathiafulvalene-based covalent organic frameworks (COFs), which can markedly improve both iodine adsorption capacity and adsorption kinetics due to their strong interaction. These functionalized architectures are designed to have high specific surface areas (up to 2359 m2 g-1) for efficient physisorption of iodine, and abundant tetrathiafulvalene functional groups for strong chemisorption of iodine. We demonstrate that these frameworks achieve excellent iodine adsorption capacity (up to 8.19 g g-1), which is much higher than those of other materials reported so far, including silver-doped adsorbents, inorganic porous materials, metal-organic frameworks, porous organic frameworks, and other COFs. Furthermore, a combined theoretical and experimental study, including DFT calculations, electron paramagnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy, reveals the strong chemical interaction between iodine and the frameworks of the materials. Our study thus opens an avenue to construct functional COFs for a critical environment-related application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA