Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Insect Sci ; 31(2): 599-612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37489338

RESUMO

Mosquitoes are of great medical significance as vectors of many deadly diseases. Mitogenomes have been widely used in phylogenetic studies, but mitogenome knowledge within the family Culicidae is limited, and Culicidae phylogeny is far from resolved. In this study, we surveyed the mitogenomes of 149 Culicidae species, including 7 newly sequenced species. Comparative analysis of 149 mosquito mitogenomes shows gene composition and order to be identical to that of an ancestral insect, and the AT bias, length variation, and codon usage are all consistent with that of other reported Dipteran mitogenomes. Phylogenetic analyses based on the DNA sequences of the 13 protein-coding genes from the 149 species robustly support the monophyly of the subfamily Anophelinae and the tribes Aedini, Culicini, Mansoniini, Sabethini, and Toxorhynchitini. To resolve ambiguous relationships between clades within the subfamily Culicinae, we performed topological tests and show that Aedini is a sister to Culicini and that Uranotaeniini is a sister to (Mansoniini + (Toxorhynchitini + Sabethini)). In addition, we estimated divergence times using a Bayesian relaxation clock based on the sequence data and 3 fossil calibration points. The results show mosquitoes diverged during the Early Jurassic with massive Culicinae radiations during the Cretaceous, coincident with the emergence of angiosperms and the burst of mammals and birds. Overall, this study, which uses the largest number of Culicidae mitogenomes sequenced to date, comprehensively reveals the mitogenome characteristics and mitogenome-based phylogeny and divergence times of Culicidae, providing information for further studies on the mitogenome, phylogeny, evolution, and taxonomic revision of Culicidae.


Assuntos
Culicidae , Genoma Mitocondrial , Animais , Culicidae/genética , Filogenia , Teorema de Bayes , Mosquitos Vetores/genética , Mamíferos/genética
2.
Genes (Basel) ; 14(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37239378

RESUMO

The Nymphalidae family of cosmopolitan butterflies (Lepidoptera) comprises approximately 7200 species found on all continents and in all habitats. However, debate persists regarding the phylogenetic relationships within this family. In this study, we assembled and annotated eight mitogenomes of Nymphalidae, constituting the first report of complete mitogenomes for this family. Comparative analysis of 105 mitochondrial genomes revealed that the gene compositions and orders were identical to the ancestral insect mitogenome, except for Callerebia polyphemus trnV being before trnL and Limenitis homeyeri having two trnL genes. The results regarding length variation, AT bias, and codon usage were consistent with previous reports on butterfly mitogenomes. Our analysis indicated that the subfamilies Limenitinae, Nymphalinae, Apaturinae, Satyrinae, Charaxinae, Heliconiinae, and Danainae are monophyletic, while the subfamily the subfamily Cyrestinae is polyphyletic. Danainae is the base of the phylogenetic tree. At the tribe level, Euthaliini in Limenitinae; Melitaeini and Kallimini in Nymphalinae; Pseudergolini in Cyrestinae; Mycalesini, Coenonymphini, Ypthimini, Satyrini, and Melanitini in Satyrinae; and Charaxini in Charaxinae are regarded as monophyletic groups. However, the tribe Lethini in Satyrinae is paraphyletic, while the tribes Limenitini and Neptini in Limenitinae, Nymphalini and Hypolimni in Nymphalinae, and Danaini and Euploeini in Danainae are polyphyletic. This study is the first to report the gene features and phylogenetic relationships of the Nymphalidae family based on mitogenome analysis, providing a foundation for future studies of population genetics and phylogenetic relationships within this family.


Assuntos
Borboletas , Genoma Mitocondrial , Animais , Borboletas/genética , Filogenia , Genoma Mitocondrial/genética
3.
Pest Manag Sci ; 78(10): 4127-4139, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35662391

RESUMO

BACKGROUND: Glutathione S-transferases (GSTs), a multifunctional protein family, are involved in insecticide resistance. However, a systematic analysis of GSTs in Anopheles sinensis, an important vector for malaria transmission, is lacking. In this study, we investigated the diversity and characteristics of GST genes, and analyzed their expression patterns and functions associated with insecticide resistance in this species. RESULTS: We identified 32 putative cytosolic and three putative microsomal GST genes in the An. sinensis genome. Transcriptome analysis showed that GSTs were highly expressed in larvae, and mainly expressed in the antennae, midgut and Malpighian tubules of adults. In addition, we found that GSTd2 and GSTe2 were significantly upregulated in four An. sinensis pyrethroid-resistant field populations. Furthermore, silencing of GSTd2 and GSTe2 significantly increased the susceptibility of An. sinensis to deltamethrin, and recombinant GSTd2 and GSTe2 exhibited high enzymatic activity in the metabolism of 1-chloro-2,4-dinitrobenzene and dichlorodiphenyltrichloroethane (DDT). CONCLUSION: These results showed that GSTs are involved in the development of insecticide resistance in An. sinensis through transcriptional overexpression and enzymatic metabolization, facilitating our understanding of insecticide resistance in insects. © 2022 Society of Chemical Industry.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , DDT , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Piretrinas/farmacologia
4.
Sci Rep ; 12(1): 5337, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351963

RESUMO

Anopheles sinensis is the main vector of malaria with a wide distribution in China and its adjacent countries. The smoke from burning dried mugwort leaves has been commonly used to repel and kill mosquito adults especially in southern Chinese provinces. In this study, the essential oils of mugwort leaves collected from seven provinces in China were extracted by steam distillation and their chemical compositions were analyzed. Among a total of 56-87 chemical constituents confirmed by GC-MS analyses, four compounds, eucalyptol, ß-caryophyllene, phytol and caryophyllene oxide, were identified with appearances from all seven distilled essential oils. The effectiveness varied in larvicidal, fumigant and repellent activities against An. sinensis from these seven essential oils with different geographic origins. The essential oil from Hubei province showed the highest larvicidal activity against the 4th instar larvae of An. sinensis, with a median lethal concentration at 40.23 µg/mL. For fumigation toxicity, essential oils from 4 provinces (Gansu, Shandong, Sichuan and Henan) were observed with less than 10 min in knockdown time. The essential oil distilled from Gansu province displayed the highest repellent activity against Anopheles mosquitoes and provided similar level of protection as observed from DEET. Eucalyptol was the most toxic fumigant compound and phytol showed the strongest larvicidal activity among all tested mugwort essential oil constituents.


Assuntos
Anopheles , Artemisia , Inseticidas , Malária , Óleos Voláteis , Animais , Artemisia/química , Inseticidas/química , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores , Óleos Voláteis/química , Óleos Voláteis/farmacologia
5.
Parasit Vectors ; 14(1): 452, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488869

RESUMO

BACKGROUND: Despite the medical importance of mosquitoes of the genus Anopheles in the transmission of malaria and other human diseases, its phylogenetic relationships are not settled, and the characteristics of mitochondrial genome (mitogenome) are not thoroughly understood. METHODS: The present study sequenced and analyzed the complete mitogenomes of An. peditaeniatus and An. nitidus, investigated genome characteristics, and inferred the phylogenetic relationships of 76 Anopheles spp. RESULTS: The complete mitogenomes of An. peditaeniatus and An. nitidus are 15,416 and 15,418 bp long, respectively, and both include 13 PCGs, 22 tRNAs, two tRNAs and one control region (CR). Mitogenomes of Anopheles spp. are similar to those of other insects in general characteristics; however, the trnR and trnA have been reversed to "trnR-trnA," as has been reported in other mosquito genera. Genome variations mainly occur in CR length (493-886 bp) with six repeat unit types identified for the first time that demonstrate an evolutionary signal. The subgenera Lophopodomyia, Stethomyia, Kerteszia, Nyssorhynchus, Anopheles and Cellia are inferred to be monophyletic, and the phylogenetic analyses support a new phylogenetic relationship among the six subgenera investigated, in that subgenus Lophopodomyia is the sister to all other five subgenera, and the remaining five subgenera are divided into two clades, one of which is a sister-taxon subgenera Stethomyia + Kerteszia, and the other consists of subgenus Nyssorhynchus as the sister to a sister-group subgenera Anopheles + Cellia. Four series (Neomyzomyia, Pyretophorus, Neocellia and Myzomyia) of the subgenus Cellia, and two series (Arribalzagia and Myzorhynchus) of the subgenus Anopheles were found to be monophyletic, whereas three sections (Myzorhynchella, Argyritarsis and Albimanus) and their subdivisions of the subgenus Nyssorhynchus were polyphyletic or paraphyletic. CONCLUSIONS: The study comprehensively uncovered the characteristics of mitogenome and the phylogenetics based on mitogenomes in the genus Anopheles, and provided information for further study on the mitogenomes, phylogenetics and taxonomic revision of the genus.


Assuntos
Anopheles/genética , Genoma Mitocondrial , Filogenia , Animais , Anopheles/classificação , Sequência de Bases , Evolução Molecular , Análise de Sequência de DNA , Especificidade da Espécie
6.
Insect Biochem Mol Biol ; 128: 103500, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278627

RESUMO

The delivery of exogenous nucleic acids to eggs or non-embryonic individuals by microinjection is a vital reverse genetics technique used to determine gene function in mosquitoes. However, DNA delivery to eggs is complex and time-consuming, and conventional, non-embryonic-injection techniques may result in unobvious phenotypes caused by insufficient absorption of nucleic acid fragments by cells at target body parts or tissues. In this study, we developed a set of electroporation-mediated non-embryonic microinjections for the delivery of exogenous nucleic acids in Anopheles sinensis. Gene silencing using this method led to down-regulation of target gene expression (AsCPR128) by 77% in targeted body parts, compared with only 10% in non-targeted body parts, thus increasing the defect-phenotype rate in the target area by 5.3-fold, compared with non-shock injected controls. Electroporation-mediated somatic transgenesis resulted in stable phenotypic characteristics of the reporter gene at the shocked body parts during the pupal-adult stages in about 69% of individuals. Furthermore, injecting plasmid DNA near the ovaries of female mosquitoes after a blood meal followed by electric shock produced three germline G1 transgenic lines, with a transformation rate of about 11.1% (calculated from ovulatory G0 females). Among the positive G1 lines, 42%, 40%, and 31% of individuals emitted red fluorescence in the larval stage. When the red fluorescent larvae developed into adults, green fluorescence was emitted from the ovaries of the females upon feeding. These results suggest that electroporation-mediated non-embryonic microinjection can be an efficient, rapid, and simple technique for analyzing gene function in non-model mosquitoes or other small insects.


Assuntos
Anopheles/genética , Eletroporação/métodos , Animais , Animais Geneticamente Modificados , Feminino , Técnicas de Transferência de Genes , Genes de Insetos , Insetos/genética , Microinjeções/métodos , Ácidos Nucleicos
7.
Pest Manag Sci ; 76(2): 769-778, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31392850

RESUMO

BACKGROUND: Insecticides are still the main method of mosquito control, but mosquito resistance presents a large obstacle. The function of mitochondrial genes in the evolution of insecticide resistance is still poorly understood. Pyrethroid is the most commonly used insecticide, and Anopheles sinensis is an important malaria vector in China and Southeast Asia. In this study, we investigated the mitochondrial genes associated with pyrethroid resistance through their genetic and expression variation based on analyses of transcriptomes and 36 individuals with resequencing in three geographical populations in China. RESULTS: The nucleotide diversity (Pi) in 18 resistant individuals was much lower than that in 18 susceptible individuals, which suggests that some sites experienced purifying selection subject to pyrethroid stress. Ka/Ks and amino acid analyses showed that ND4 experienced positive selection and had 23 amino acid mutations due to pyrethroid stress. These mutations might change the ND4 structure and function and thus alter the efficiency of the respiratory chain. ND5 was significantly upregulated, and ATP8 was significantly downregulated in these three pyrethroid resistant populations, which suggests that these two genes function in the production and maintenance of pyrethroid resistance. There are differences in mitochondrial genes involved in pyrethroid resistance among these three populations. CONCLUSION: This is the first study to reveal the association of mitochondrial genes in the evolution of insecticide resistance through amino acid mutation and expression patterns and can help us further understand insecticide resistance mechanisms. © 2019 Society of Chemical Industry.


Assuntos
Anopheles , Genoma Mitocondrial , Malária , Animais , China , Perfilação da Expressão Gênica , Genes Mitocondriais , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Piretrinas
8.
Parasit Vectors ; 12(1): 368, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349856

RESUMO

BACKGROUND: Despite the medical importance of the genus Culex, the mitochondrial genome (mt genome) characteristics of Culex spp. are not well understood. The phylogeny of the genus and particularly the generic status of the genus Lutzia and the subgenus Culiciomyia remain unclear. METHODS: The present study sequenced and analyzed the complete mt genomes of Lutzia halifaxia, Lutzia fuscanus and Cx. (Culiciomyia) pallidothorax and assessed the general characteristics and phylogenetics of all known 16 mt genome sequences for species in the genera Culex and Lutzia. RESULTS: The complete mt genomes of Lt. halifaxia, Lt. fuscanus and Cx. pallidothorax are 15,744, 15,803 and 15,578 bp long, respectively, including 13 PCGs, 22 tRNAs, two tRNAs and a control region (CR). Length variations in the Culex and Lutzia mt genomes involved mainly the CR, and gene arrangements are the same as in other mosquitoes. We identified four types of repeat units in the CR sequences, and the poly-T stretch exists in all of these mt genomes. The repeat units of CR are conserved to different extent and provide information on their evolution. Phylogenetic analyses demonstrated that the Coronator and Sitiens groups are each monophyletic, whereas the monophyletic status of the Pipiens Group was not supported; Cx. pallidothorax is more closely related to the Sitiens and Pipiens groups; and both phylogenetics analysis and repeat unit features in CR show that Lutzia is a characteristic monophyletic entity, which should be an independent genus. CONCLUSIONS: To our knowledge, this is the first comprehensive review of the mt genome sequences and taxonomic discussion based on the mt genomes of Culex spp. and Lutzia spp. The research provides general information on the mt genome of these two genera, and the phylogenetic and taxonomic status of Lutzia and Culiciomyia.


Assuntos
Culicidae/genética , Genoma Mitocondrial , Filogenia , Animais , Culicidae/classificação , Feminino , Análise de Sequência de DNA
9.
Malar J ; 18(1): 132, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975215

RESUMO

BACKGROUND: Heat shock proteins (HSPs) are molecular chaperones that are involved in many normal cellular processes and various kinds of environmental stress. There is still no report regarding the diversity and phylogenetics research of HSP superfamily of genes at whole genome level in insects, and the HSP gene association with pyrethroid resistance is also not well known. The present study investigated the diversity, classification, scaffold location, characteristics, and phylogenetics of the superfamily of genes in Anopheles sinensis genome, and the HSP genes associated with pyrethroid resistance. METHODS: The present study identified the HSP genes in the An. sinensis genome, analysed their characteristics, and deduced phylogenetic relationships of all HSPs in An. sinensis, Anopheles gambiae, Culex quinquefasciatus and Aedes aegypti by bioinformatic methods. Importantly, the present study screened the HSPs associated with pyrethroid resistance using three field pyrethroid-resistant populations with RNA-seq and RT-qPCR, and looked over the HSP gene expression pattern for the first time in An. sinensis on the time-scale post insecticide treatment with RT-qPCR. RESULTS: There are 72 HSP genes in An. sinensis genome, and they are classified into five families and 11 subfamilies based on their molecular weight, homology and phylogenetics. Both RNA-seq and qPCR analysis revealed that the expression of AsHSP90AB, AsHSP70-2 and AsHSP21.7 are significantly upregulated in at least one field pyrethroid-resistant population. Eleven genes are significantly upregulated in different period after pyrethroid exposure. The HSP90, sHSP and HSP70 families are proposed to be involved in pyrethroid stress response based in expression analyses of three field pyrethroid-resistant populations, and expression pattern on the time scale post insecticide treatment. The AsHSP90AB gene is proposed to be the essential HSP gene for pyrethroid stress response in An. sinensis. CONCLUSIONS: This study provides the information frame for HSP superfamily of genes, and lays an important basis for the better understanding and further research of HSP function in insect adaptability to diverse environments.


Assuntos
Anopheles/genética , Variação Genética , Proteínas de Choque Térmico/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Insetos/metabolismo , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Família Multigênica/genética , Filogenia , Reação em Cadeia da Polimerase
10.
Malar J ; 18(1): 62, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845961

RESUMO

BACKGROUND: UDP-glycosyltransferase (UGT) is an important biotransformation superfamily of enzymes. They catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules, and function in several physiological processes, including detoxification, olfaction, cuticle formation, pigmentation. The diversity, classification, scaffold location, characteristics, phylogenetics, and evolution of the superfamily of genes at whole genome level, and their association and mutations associated with pyrethroid resistance are still little known. METHODS: The present study identified UGT genes in Anopheles sinensis genome, classified UGT genes in An. sinensis, Anopheles gambiae, Aedes aegypti and Drosophila melanogaster genomes, and analysed the scaffold location, characteristics, phylogenetics, and evolution of An. sinensis UGT genes using bioinformatics methods. The present study also identified the UGTs associated with pyrethroid resistance using three field pyrethroid-resistant populations with RNA-seq and RT-qPCR, and the mutations associated with pyrethroid resistance with genome re-sequencing in An. sinensis. RESULTS: There are 30 putative UGTs in An. sinensis genome, which are classified into 12 families (UGT301, UGT302, UGT306, UGT308, UGT309, UGT310, UGT313, UGT314, UGT315, UGT36, UGT49, UGT50) and further into 23 sub-families. The UGT308 is significantly expanded in gene number compared with other families. A total of 119 UGTs from An. sinensis, An. gambiae, Aedes aegypti and Drosophila melanogaster genomes are classified into 19 families, of which seven are specific for three mosquito species and seven are specific for Drosophila melanogaster. The UGT308 and UGT302 are proposed to main families involved in pyrethroid resistance. The AsUGT308D3 is proposed to be the essential UGT gene for the participation in biotransformation in pyrethroid detoxification process, which is possibly regulated by eight SNPs in its 3' flanking region. The UGT302A3 is also associated with pyrethroid resistance, and four amino acid mutations in its coding sequences might enhance its catalytic activity and further result in higher insecticide resistance. CONCLUSIONS: This study provides the diversity, phylogenetics and evolution of UGT genes, and potential UGT members and mutations involved in pyrethroid resistance in An. sinensis, and lays an important basis for the better understanding and further research on UGT function in defense against insecticide stress.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Glicosiltransferases/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Proteínas Mutantes/genética , Piretrinas/farmacologia , Aedes/enzimologia , Aedes/genética , Animais , Anopheles/genética , Biologia Computacional , Drosophila/enzimologia , Drosophila/genética , Feminino , Perfilação da Expressão Gênica , Glicosiltransferases/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
11.
Mycologia ; 110(2): 325-338, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29852093

RESUMO

Ascosphaera apis is an intestinally infective, spore-forming, filamentous fungus that infects honeybees and causes deadly chalkbrood disease. Although A. apis has been known for 60 y, little is known about the ultrastructure of the spores. In this study, the fine morphology and ultrastructure of an isolate, A. apis CQ1 from southwest China, was comprehensively identified by transmission electron microscopy, confocal laser scanning microscopy, scanning electron microscopy, and optical microscopy. The high sequence similarity and phylogenetic data based on nuc rDNA ITS1-5.8S-ITS2 (ITS) supported the hypothesis that the CQ1 strain is a new member of the A. apis species. Morphological observation indicated that the mature spores are long ovals with an average size of 2 × 1.2 µm and are tightly packed inside spherical spore balls. More than 10 spore balls that were 8-16 µm in diameter were wrapped and formed a spherical, nearly hyaline spore cyst of 50-60 µm in diameter. Ultrastructural analysis showed that mature spores have two nuclei with distinctly different sizes. A large nucleus with double nuclear membranes was found in the center of the spore, whereas the small nucleus was only one-fifth of the large nucleus volume and was located near the end of the spore. Numerous ribosomes filled the cytoplasm, and many mitochondria with well-defined structures were arranged along the inner spore wall. The spore wall consists of an electron-dense outer surface layer, an electron-lucent layer, and an inner plasma membrane. Chitin is the major component of the spore wall. The germinated spore was observed as an empty spore coat, whereas the protoplasts, including the nuclei, mitochondria, and ribosomes, had been discharged. In addition to these typical fungal spore organelles, an unknown electron-dense regular structure might be the growing mycelium, which was arranged close to the inner spore wall and almost covered the entire wall area.


Assuntos
Abelhas/microbiologia , Onygenales/citologia , Onygenales/ultraestrutura , Esporos Fúngicos/citologia , Esporos Fúngicos/ultraestrutura , Animais , Parede Celular/química , China , Quitina/análise , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Microscopia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Onygenales/classificação , Onygenales/isolamento & purificação , Organelas/ultraestrutura , Filogenia , RNA Ribossômico 5,8S , Análise de Sequência de DNA
12.
Pest Manag Sci ; 74(8): 1810-1820, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29393554

RESUMO

BACKGROUND: Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. RESULTS: Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. CONCLUSION: Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry.


Assuntos
Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Genoma de Inseto , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Família Multigênica/genética , Sequência de Aminoácidos , Animais , Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Malária , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/enzimologia , Mosquitos Vetores/genética , Filogenia , Piretrinas/farmacologia
13.
Insect Sci ; 25(3): 368-378, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27996203

RESUMO

Most of adult female mosquitoes secrete saliva to facilitate blood sucking, digestion and nutrition, and mosquito-borne disease prevention. The knowledge of classification and characteristics of sialotranscriptome genes are still quite limited. Anopheles sinensis is a major malaria vector in China and southeast Asian countries. In this study, the An. sinensis sialotranscriptome was sequenced using Illumina sequencing technique with a total of 10 907 unigenes to be obtained and annotated in biological functions and pathways, and 10 470 unigenes were mapped to An. sinensis reference genome with 70.46% of genes having 90%-100% genome mapping through bioinformatics analysis. These mapped genes were classified into four categories: housekeeping (6632 genes), secreted (1177), protein-coding genes with function-unknown (2646) and transposable element (15). The housekeeping genes were divided into 27 classes, and the secreted genes were divided into 11 classes and 96 families. The classification, characteristics and evolution of these classes/families of secreted genes are further described and discussed. The comparison of the 1177 secreted genes in An. sinensis in the Anophelinae subfamily with 811 in Psorophora albipes in the Culicinae subfamily show that six classes/subclasses have the gene number more than twice and two classes (uniquely found in anophelines, and Orphan proteins of unique standing) are unique in the former compared with the latter, whereas four classes/subclasses are much expanded and uniquely found in the Aedes class and is unique in the later. The An. sinensis sialotranscriptome sequence data is the most complete in mosquitoes to date, and the analyses provide a comprehensive information frame for further research of mosquito sialotranscriptome.


Assuntos
Anopheles/metabolismo , Sequenciamento do Exoma , Transcriptoma , Animais , Anopheles/genética , Feminino , Proteínas de Insetos/genética , Glândulas Salivares/metabolismo
14.
Pest Manag Sci ; 74(1): 159-169, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28731595

RESUMO

BACKGROUND: Carboxylesterases (CCEs) are one of three large detoxification enzyme families. Some CCEs are active on synthetic insecticides with ester structures. Anopheles sinensis is an important malaria vector in eastern Asia. This study identified and characterized the CCE genes in the A. sinensis genome and determined CCE genes associated with pyrethroid resistance using RNA sequencing (RNA-seq) and quantitative reverse transcription - polymerase chain reaction (qRT-PCR), in A. sinensis from Anhui, Chongqing, and Yunnan in China. RESULTS: Fifty-seven putative CCEs were identified and placed into three classes, 12 subfamilies and 14 clades through phylogenetic and homology analyses. Exon sizes ranged from 31 to 4317 bp, with 49 CCEs having two to five exons and eight having six to 11 exons. A total of 183 introns were recognized with sizes ranging from 31 to 4317 bp. The 57 CCEs were located on 14 scaffolds, with 70% located on four scaffolds. The alpha-esterase subfamily was significantly expanded compared with that of Anopheles gambiae. In a pyrethroid-resistant strain, RNA-seq detected five upregulated CCE genes and qRT-PCR detected 12 upregulated CCE genes. The α-esterase 10 (AsAe10) and acetylcholinesterase 1 (AsAce1) genes were the main CCE genes associated with pyrethroid resistance. CONCLUSION: This information will be useful for further study of the CCE gene family and pyrethroid resistance mechanisms mediated by CCEs. © 2017 Society of Chemical Industry.


Assuntos
Anopheles/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Animais , Anopheles/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Feminino , Expressão Gênica , Proteínas de Insetos/metabolismo , Malária/transmissão , Mosquitos Vetores/enzimologia , Mosquitos Vetores/genética , Filogenia , Análise de Sequência de DNA
15.
Sci Rep ; 7(1): 7666, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794438

RESUMO

To better understand the phylogeny and evolution of mosquitoes, the complete mitochondrial genome (mitogenome) of Anopheles stephensi and An. dirus were sequenced and annotated, and a total of 50 mosquito mitogenomes were comparatively analyzed. The complete mitogenome of An. stephensi and An. dirus is 1,5371 bp and 1,5406 bp long, respectively. The main features of the 50 mosquito mitogenomes are conservative: 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes, positive AT-skew and negative GC-skew. The gene order trnA-trnR in ancestral insects is rearranged. All tRNA genes have the typical clover leaf secondary structure but tRNA Ser . The control regions are highly variable in size. PCGs show signals of purifying selection, but evidence for positive selection in ND2, ND4 and ND6 is found. Bayesian and Maximum Likelihood phylogenetic analyses based on all PCG nucleotides produce an identical tree topology and strongly support the monophyly of subgenera Cellia, Anopheles, Keterszia and Nyssorhynchus, the sister relationship of the subgenera Nyssorhynchus and Keterszia, and Cellia and Anopheles. The most recent ancestor of the genus Anopheles and Culicini + Aedini exited ~145 Mya ago. This is the first comprehensive study of mosquito mitogenomes, which are effective for mosquito phylogeny at various taxonomic levels.


Assuntos
Anopheles/classificação , Anopheles/genética , Evolução Molecular , Genoma Mitocondrial , Genômica , Animais , Ordem dos Genes , Genômica/métodos , Fases de Leitura Aberta , Filogenia , Seleção Genética
16.
Parasit Vectors ; 10(1): 171, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376914

RESUMO

BACKGROUND: Phenol oxidases (POs) catalyze the oxidation of dopa and dopamine to melanin, which is crucial for cuticle formation and innate immune maintenance in insects. Although, Laccase 2, a member of the PO family, has been reported to be a requirement for melanin-mediated cuticle tanning in the development stages of some insects, whether it participates in cuticle construction and other physiological processes during the metamorphosis of mosquito pupae is unclear. METHODS: The association between the phenotype and the expression profile of Anopheles sinensis Laccase 2 (AsLac2) was assessed from pupation to adult eclosion. Individuals showing an expression deficiency of AsLac2 that was produced by RNAi and their phenotypic defects and physiological characterizations were compared in detail with the controls. RESULTS: During the dominant expression period, knockdown of AsLac2 in pupae caused the cuticle to be unpigmented, and produced thin and very soft cuticles, which further impeded the eclosion rate of adults as well as their fitness. Moreover, melanization immune responses in the pupae were sharply decreased, leading to poor resistance to microorganism infection. Both the high conservation among Laccase 2 homologs and a very similar genomic synteny of the neighborhood in Anopheles genus implies a conservative function in the pupal stage. CONCLUSIONS: To our knowledge, this is the first study to report the serious phenotypic defects in mosquito pupae caused by the dysfunction of Laccase 2. Our findings strongly suggest that Laccase 2 is crucial for Anopheles cuticle construction and melanization immune responses to pathogen infections during pupal metamorphosis. This irreplaceability provides valuable information on the application of Lacccase 2 and/or other key genes in the melanin metabolism pathway for developing mosquito control strategies.


Assuntos
Anopheles/enzimologia , Anopheles/imunologia , Resistência à Doença , Tegumento Comum/fisiologia , Lacase/deficiência , Animais , Perfilação da Expressão Gênica , Inativação Gênica , Pupa/enzimologia , Pupa/imunologia , Interferência de RNA , Análise de Sequência de DNA , Curtume
17.
Mitochondrial DNA B Resour ; 2(2): 477-479, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33473870

RESUMO

In this study, we sequenced and analyzed the complete mitochondrial genome of Culex gelidus. The mitogenome is 15,600 bp long, and contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a control region. The gene order and composition are identical with those mitogenomes reported in other mosquito species. The whole base composition is A (39.8%), T (39.2%), G (8.8%), and C (12.2%). The PCGs have the initiation codon ATN except for COI with a TCG, and possess the complete termination codon TAA or incomplete T. The phylogenetic analysis of known Culex mitogenome sequences was carried out based on the nucleotide sequences of 13 PCGs, and the result showed that Cx. P. pipiens, Cx. P. pallens, and Cx. p. quinquefasciatus were claded into the Pipiens Complex in the Pipiens Group, and Cx. gelidus might be inappropriate to be classified into the Pipiens Group. Whether the mosquito species group with Cx. gelidus as type should be regarded as a Gelidus Group or Subgroup and its taxonomic position need to be elucidated with more molecular data.

18.
Insect Sci ; 23(3): 353-65, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26852698

RESUMO

Anopheles minimus is an important vector of human malaria in southern China and Southeast Asia. The phylogenetics of mosquitoes has not been well resolved, and the mitochondrial genome (mtgenome) has proven to be an important marker in the study of evolutionary biology. In this study, the complete mtgenome of An. minimus was sequenced for the first time. It is 15 395 bp long and encodes 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and a non-coding region. The gene organization is consistent with those of known Anopheles mtgenomes. The mtgenome performs a clear bias in nucleotide composition with a positive AT-skew and a negative GC-skew. All 13 PCGs prefer to use the codon UUA (Leu), ATN as initiation codon but cytochrome-oxidase subunit 1 (COI) and ND5, with TCG and GTG, and TAA as termination codon, but COI, COII, COIII and ND4, all with the incomplete T. tRNAs have the typical clover-leaf structure, but tRNA(Ser(AGN)) is consistent with known Anopheles mtgenomes. The control region includes a conserved T-stretch and a (TA)n stretch, and has the highest A+T content at 93.1%. The phylogenetics of An. minimus with 18 other Anopheles species was constructed by maximum likelihood and Bayesian inference, based on concatenated PCG sequences. The subgenera, Cellia and Anopheles, and Nyssorhynchus and Kerteszia have mutually close relationships, respectively. The Punctulatus group and Leucosphyrus group of Neomyzomyia Series, and the Albitarsis group of Albitarsis Series were suggested to be monophyletic. The monophyletic status of the subgenera, Cellia, Anopheles, Nyssorhynchus and Kerteszia need to be further elucidated.


Assuntos
Anopheles/genética , Genoma Mitocondrial , Animais , Sequência de Bases , Teorema de Bayes , Genoma de Inseto , Proteínas de Insetos/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética
19.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2909-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26114319

RESUMO

The complete mitochondrial genome sequence of Anopheles culicifacial species B was sequenced in this study. The length of the mitochondrial genome is 15 330 bp, which contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a non-coding control region. The gene order and the gene composition are consistent with those previously reported for other mosquito species. The initiation codon of the PCGs complies with the ATN rule except for COI using TCG and ND5 using GTG as a start codon, and the termination codon is TAA or imcomplete, an only T. The total base composition is 40.4% A, 38.1% T, 12.4% C, and 9.1% G. The phylogenetic tree based on the sequences of 13 protein-coding genes showed that these species were classified into two clades, corresponding to the subgenus Cellia and subgenus Nyssorhynchus. An. culicifacies species B of Myzomyia Series was clustered with An. gambiae of Pyretophorus Series with a high bootstrap value of 100%. The complete mitogenome data can provide a basis for molecular identification and phylogenetic studies of mosquito species.


Assuntos
Anopheles/classificação , Anopheles/genética , Genoma Mitocondrial , Animais , Composição de Bases , Genes Mitocondriais , Tamanho do Genoma , Filogenia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA