Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Foods ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998467

RESUMO

Snake gourd is a seasonal vegetable with a high water content and medicinal value, but the short harvest period limits the large-scale application of snake gourd. Therefore, the effects of freeze-thaw pretreatment (FT) combined with hot air (HD) on the drying characteristics, active ingredients and bioactivities of snake gourd were investigated. The results showed that FT pretreatment reduced browning and shortened the drying time by 44%; the Page model was the best fit for describing the drying process. The polysaccharide contents (21.70% in alcoholic extract (TG1) and 44.34% in water extract (TG2)) and total phenol contents (1.81% in TG1 and 0.88% in TG2) of snake gourd pretreated by FT-HD were higher than those of snake gourd pretreated by the corresponding HD treatment. The FT pretreatment decreased the molecular weight of snake gourd polysaccharides and increased the molar ratio of glucose. The extracts pretreated by FT-HD showed greater chemical, cellular antioxidant capacity and α-amylase and α-glucosidase inhibition than those pretreated by HD. FT-HD can be recommended for achieving a short drying time and high quality of snake gourd and can be used for the drying of other fruits and vegetables.

3.
Fish Physiol Biochem ; 50(4): 1861-1877, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38951427

RESUMO

The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.


Assuntos
Evolução Molecular , Lampreias , Receptores de Glutamato Metabotrópico , Animais , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Lampreias/genética , Lampreias/metabolismo , Filogenia , Transdução de Sinais
4.
Med Sci Monit ; 30: e944265, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074073

RESUMO

With the surge in the human coastal population and the increasing frequency of human activities along the coast, cases of marine envenomation, particularly jellyfish envenomation, have notably risen. Jellyfish stings can induce a spectrum of symptoms that vary in severity, encompassing skin injuries, acute systemic venom effects, delayed indirect sequelae, and even fatality, causing significant distress to patients. Among these manifestations, the occurrence of skin lesions following jellyfish stings is prevalent and substantial. These lesions are characterized by evident blister formation, development of bullae, subcutaneous hemorrhage, erythema, papules, wheal, ecchymosis, and ulceration or skin necrosis. Local cutaneous manifestations may persist for several weeks or even months after the initial sting. Despite aggressive treatment, many skin injuries still result in significant pigmentation or scarring after recovery. To address this issue effectively, it is imperative to conduct comprehensive evidence-based medical research, elucidate various components within jellyfish venom, and elucidate its pathogenic mechanism to develop targeted treatment programs. This article aims to review the skin symptoms, pathophysiology, and management of jellyfish stings. Such considerations can provide comprehensive guidance to medical professionals and the public and minimize the harm caused by jellyfish stings.


Assuntos
Mordeduras e Picadas , Venenos de Cnidários , Pele , Humanos , Mordeduras e Picadas/terapia , Mordeduras e Picadas/fisiopatologia , Mordeduras e Picadas/complicações , Animais , Pele/patologia , Pele/fisiopatologia , Cnidários , Dermatopatias/terapia , Dermatopatias/fisiopatologia , Dermatopatias/etiologia , Cifozoários
5.
ACS Sens ; 9(8): 3947-3957, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39046188

RESUMO

In recent years, flexible and stretchable strain sensors have emerged as a prominent area of research, primarily due to their remarkable stretchability and extremely low strain detection threshold. Nevertheless, the advancement of sensors is currently constrained by issues such as complexity, high costs, and limited durability. To tackle the aforementioned issues, this study introduces a lepidophyte-inspired flexible, stretchable strain sensor (LIFSSS). The stretchable bioelectronics composites were composed of multiwalled carbon nanotubes, graphene, neodymium iron boron, and polydimethylsiloxane. Unique biolepidophyted microstructures and magnetic conductive nanocomposites interact with each other through synergistic interactions, resulting in the effective detection of tensile strain and magnetic excitation. The LIFSSS exhibits a 170% tensile range, a linearity of 0.99 in 50-170% strain (0.96 for full-scale range), and a fine durability of 7000 cycles at 110% tensile range. The sensor accurately detects variations in linear tensile force, human movement, and microexpressions. Moreover, LIFSSS demonstrates enhanced efficacy in sign language recognition for individuals with hearing impairments and magnetic grasping for robotic manipulators. Hence, the LIFSSS proposed in this study shows potential applications in various fields, including bioelectronics, electronic skin, and physiological activity monitoring.


Assuntos
Dimetilpolisiloxanos , Grafite , Nanocompostos , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Nanocompostos/química , Nanotubos de Carbono/química , Humanos , Dimetilpolisiloxanos/química , Grafite/química , Neodímio/química , Resistência à Tração , Técnicas Biossensoriais/métodos , Fenômenos Biomecânicos
6.
Bioresour Technol ; 406: 130983, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880266

RESUMO

In this study, a 3D CoNiO2/Co core-shell structure biochar catalyst derived from walnut shell was synthesized by hydrothermal and ion etching methods. The prepared BC@CoNi-600 catalyst exhibited exceptional peroxymonosulfate (PMS) activation. The system achieved 100 % degradation of sulfamethoxazole (SMX). The reactive oxygen species in the BC@CoNi-600/PMS system included SO4-, OH, and O2-. Density functional theory calculations explored the synergistic effects between nickel-cobalt bimetallic and carbon matrix during PMS activation. The unique 3D core-shell structure of BC@CoNi-600 features an outer nickel-cobalt bimetallic layer with exceptional PMS adsorption capacity, while protecting the zero-valence Co of the inner layer from oxidation. Based on the experimental-data, machine learning modeling mechanism, and information theory, a nonlinear modeling method was proposed. This study utilizes a machine learning approach to investigate the degradation of SMX in complex aquatic environments. This study synthesized a novel biochar-based catalyst for activated PMS and provided unique insights into its environmental applications.


Assuntos
Carvão Vegetal , Cobalto , Peróxidos , Sulfametoxazol , Sulfametoxazol/química , Carvão Vegetal/química , Catálise , Peróxidos/química , Cobalto/química , Poluentes Químicos da Água/química , Níquel/química , Juglans/química , Adsorção , Purificação da Água/métodos
7.
ACS Appl Mater Interfaces ; 16(25): 32702-32712, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870327

RESUMO

Herein, we report a dual-functional flexible sensor (DFFS) using a magnetic conductive polymer composed of nickel (Ni), carbon black (CB), and polydimethylsiloxane (PDMS). The material selection for the DFFS utilizes the excellent elasticity of the PDMS matrix and the synergistic interaction between Ni and CB. The DFFS has a wide strain range of 0-170%, a high sensitivity of 74.13 (140-170%), and a low detection limit of 0.3% strain. The DFFS based on superior performance can accurately detect microstrain/microvibration, oncoming/contacting objects, and bicycle riding speed. Additionally, the DFFS can be used for comprehensive monitoring of human movements. Therefore, the DFFS of this work shows significant value for implementation in intelligent wearable devices and noncontact intelligent control.


Assuntos
Dimetilpolisiloxanos , Microesferas , Níquel , Fuligem , Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos/química , Humanos , Níquel/química , Fuligem/química , Movimento , Condutividade Elétrica
8.
J Colloid Interface Sci ; 663: 624-631, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430832

RESUMO

Developing efficient and stable electrocatalysts at affordable costs is very important for large-scale production of green hydrogen. In this study, unique amphoteric metallic element-doped NiFe-LDH nanosheet arrays (NiFeCd-LDH, NiFeZn-LDH and NiFeAl-LDH) using as high-performance bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were reported, by tuning electronic structure and vacancy engineering. It was found that NiFeCd-LDH possesses the lowest overpotentials of 85 mV and 240 mV (at 10 mA cm-2) for HER and OER, respectively. Density functional theory (DFT) calculations reveal the synergistic effect of Cd vacancies and Cd doping on improving alkaline HER performance, which promote the achievement of excellent catalytic activity and ultrastable hydrogen production at a large current density of 1000 mA cm-2 within 250 h. Besides, the overall water splitting performance of the as-prepared NiFeCd-LDH requires only 1.580 V to achieve a current density of 10 mA cm-2 in alkaline seawater media, underscoring the importance of modifying the electronic properties of LDH for efficient overall water splitting in both alkaline water/seawater environments.

9.
J Chem Inf Model ; 64(4): 1407-1418, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334115

RESUMO

Studying the effect of single amino acid variations (SAVs) on protein structure and function is integral to advancing our understanding of molecular processes, evolutionary biology, and disease mechanisms. Screening for deleterious variants is one of the crucial issues in precision medicine. Here, we propose a novel computational approach, TransEFVP, based on large-scale protein language model embeddings and a transformer-based neural network to predict disease-associated SAVs. The model adopts a two-stage architecture: the first stage is designed to fuse different feature embeddings through a transformer encoder. In the second stage, a support vector machine model is employed to quantify the pathogenicity of SAVs after dimensionality reduction. The prediction performance of TransEFVP on blind test data achieves a Matthews correlation coefficient of 0.751, an F1-score of 0.846, and an area under the receiver operating characteristic curve of 0.871, higher than the existing state-of-the-art methods. The benchmark results demonstrate that TransEFVP can be explored as an accurate and effective SAV pathogenicity prediction method. The data and codes for TransEFVP are available at https://github.com/yzh9607/TransEFVP/tree/master for academic use.


Assuntos
Algoritmos , Proteínas , Humanos , Proteínas/química , Sequência de Aminoácidos , Redes Neurais de Computação , Aminoácidos
10.
ACS Omega ; 9(2): 2032-2047, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250421

RESUMO

Genetic variations (including substitutions, insertions, and deletions) exert a profound influence on DNA sequences. These variations are systematically classified as synonymous, nonsynonymous, and nonsense, each manifesting distinct effects on proteins. The implementation of high-throughput sequencing has significantly augmented our comprehension of the intricate interplay between gene variations and protein structure and function, as well as their ramifications in the context of diseases. Frameshift variations, particularly small insertions and deletions (indels), disrupt protein coding and are instrumental in disease pathogenesis. This review presents a succinct review of computational methods, databases, current challenges, and future directions in predicting the consequences of coding frameshift small indels variations. We analyzed the predictive efficacy, reliability, and utilization of computational methods and variant account, reliability, and utilization of database. Besides, we also compared the prediction methodologies on GOF/LOF pathogenic variation data. Addressing the challenges pertaining to prediction accuracy and cross-species generalizability, nascent technologies such as AI and deep learning harbor immense potential to enhance predictive capabilities. The importance of interdisciplinary research and collaboration cannot be overstated for devising effective diagnosis, treatment, and prevention strategies concerning diseases associated with coding frameshift indels variations.

11.
J Colloid Interface Sci ; 660: 203-214, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244489

RESUMO

Recently, wearable electronic products and gadgets have developed quickly with the aim of catching up to or perhaps surpassing the ability of human skin to perceive information from the external world, such as pressure and strain. In this study, by first treating the cellulosic fiber (modal textile) substrate with (3-aminopropyl) triethoxysilane (APTES) and then covering it with conductive nanocomposites, a bionic corpuscle layer is produced. The sandwich structure of tactile corpuscle-inspired bionic (TCB) piezoresistive sensors created with the layer-by-layer (LBL) technology consists of a pressure-sensitive module (a bionic corpuscle), interdigital electrodes (a bionic sensory nerve), and a PU membrane (a bionic epidermis). The synergistic mechanism of hydrogen bond and coupling agent helps to improve the adhesive properties of conductive materials, and thus improve the pressure sensitive properties. The TCB sensor possesses favorable sensitivity (1.0005 kPa-1), a wide linear sensing range (1700 kPa), and a rapid response time (40 ms). The sensor is expected to be applied in a wide range of possible applications including human movement tracking, wearable detection system, and textile electronics.


Assuntos
Nanocompostos , Silanos , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica , Nanocompostos/química , Têxteis
12.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203782

RESUMO

At present, there is a research gap concerning the specific functions and mechanisms of the Notch gene family and its signaling pathway in jawless vertebrates. In this study, we identified a Notch1 homologue (Lr. Notch1) in the Lethenteron reissneri database. Through bioinformatics analysis, we identified Lr. Notch1 as the likely common ancestor gene of the Notch gene family in higher vertebrates, indicating a high degree of conservation in the Notch gene family and its signaling pathways. To validate the biological function of Lr. Notch1, we conducted targeted silencing of Lr. Notch1 in L. reissneri and analyzed the resultant gene expression profile before and after silencing using transcriptome analysis. Our findings revealed that the silencing of Lr. Notch1 resulted in differential expression of pathways and genes associated with signal transduction, immune regulation, and metabolic regulation, mirroring the biological function of the Notch signaling pathway in higher vertebrates. This article systematically elucidated the origin and evolution of the Notch gene family while also validating the biological function of Lr. Notch1. These insights offer valuable clues for understanding the evolution of the Notch signaling pathway and establish a foundation for future research on the origin of the Notch signaling pathway, as well as its implications in human diseases and immunomodulation.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Animais , Filogenia , Bases de Dados Factuais , Imunomodulação , Receptores Notch
13.
Commun Biol ; 6(1): 1281, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110614

RESUMO

Epithelial-mesenchymal transition (EMT) is a common process during tumor progression and is always related to residual tumor, drug resistance and immune suppression. However, considering the heterogeneity in EMT process, there is still a need to establish robust EMT classification system with reasonable molecular, biological and clinical implications to investigate whether these unfavorable survival factors are common or unique in different individuals. In our work, we classify tumors with four EMT status, that is, EMTlow, EMTmid, EMThigh-NOS (Not Otherwise Specified), and EMThigh-AKT (AKT pathway overactivation) subtypes. We find that EMThigh-NOS subtype is driven by intrinsic somatic alterations. While, EMThigh-AKT subtype is maintained by extrinsic cellular interplay between tumor cells and macrophages in an AKT-dependent manner. EMThigh-AKT subtype is both unresectable and drug resistant while EMThigh-NOS subtype can be treated with cell cycle related drugs. Importantly, AKT activation in EMThigh-AKT not only enhances EMT process, but also contributes to the immunosuppressive microenvironment. By remodeling tumor immune-microenvironment by AKT inhibition, EMThigh-AKT can be treated by immune checkpoint blockade therapies. Meanwhile, we develop TumorMT website ( http://tumormt.neuroscience.org.cn/ ) to apply this EMT classification and provide reasonable therapeutic guidance.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral , Neoplasias/tratamento farmacológico , Imunoterapia , Transição Epitelial-Mesenquimal/fisiologia
14.
J Chem Inf Model ; 63(22): 7239-7257, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947586

RESUMO

Understanding the pathogenicity of missense mutation (MM) is essential for shed light on genetic diseases, gene functions, and individual variations. In this study, we propose a novel computational approach, called MMPatho, for enhancing missense mutation pathogenic prediction. First, we established a large-scale nonredundant MM benchmark data set based on the entire Ensembl database, complemented by a focused blind test set specifically for pathogenic GOF/LOF MM. Based on this data set, for each mutation, we utilized Ensembl VEP v104 and dbNSFP v4.1a to extract variant-level, amino acid-level, individuals' outputs, and genome-level features. Additionally, protein sequences were generated using ENSP identifiers with the Ensembl API, and then encoded. The mutant sites' ESM-1b and ProtTrans-T5 embeddings were subsequently extracted. Then, our model group (MMPatho) was developed by leveraging upon these efforts, which comprised ConsMM and EvoIndMM. To be specific, ConsMM employs individuals' outputs and XGBoost with SHAP explanation analysis, while EvoIndMM investigates the potential enhancement of predictive capability by incorporating evolutionary information from ESM-1b and ProtT5-XL-U50, large protein language embeddings. Through rigorous comparative experiments, both ConsMM and EvoIndMM were capable of achieving remarkable AUROC (0.9836 and 0.9854) and AUPR (0.9852 and 0.9902) values on the blind test set devoid of overlapping variations and proteins from the training data, thus highlighting the superiority of our computational approach in the prediction of MM pathogenicity. Our Web server, available at http://csbio.njust.edu.cn/bioinf/mmpatho/, allows researchers to predict the pathogenicity (alongside the reliability index score) of MMs using the ConsMM and EvoIndMM models and provides extensive annotations for user input. Additionally, the newly constructed benchmark data set and blind test set can be accessed via the data page of our web server.


Assuntos
Biologia Computacional , Mutação de Sentido Incorreto , Humanos , Reprodutibilidade dos Testes , Consenso , Proteínas
15.
Ecotoxicol Environ Saf ; 266: 115533, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806127

RESUMO

High environment ammonia (HEA) poses a deadly threat to aquatic animals and indirectly impacts human healthy life, while nutritional regulation can alleviate chronic ammonia toxicity. α-lipoic acid exhibits antioxidative effects in both aqueous and lipid environments, mitigating cellular and tissue damage caused by oxidative stress by aiding in the neutralization of free radicals (reactive oxygen species). Hence, investigating its potential as an effective antioxidant and its protective mechanisms against chronic ammonia stress in crucian carp is highly valuable. Experimental fish (initial weight 20.47 ± 1.68 g) were fed diets supplemented with or without 0.1% α-lipoic acid followed by a chronic ammonia exposure (10 mg/L) for 42 days. The results revealed that chronic ammonia stress affected growth (weight gain rate, specific growth rate, and feed conversion rate), leading to oxidative stress (decreased the activities of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase; decreased total antioxidant capacity), increased lipid peroxidation (accumulation of malondialdehyde), immune suppression (decreased contents of nonspecific immune enzymes AKP and ACP, 50% hemolytic complement, and decrease of immunoglobulin M), impaired ammonia metabolism (reduced contents of Glu, GS, GSH, and Gln), imbalance of expression of induced antioxidant-related genes (downregulation of Cu/Zu SOD, CAT, Nrf2, and HO-1; upregulation of GST and Keap1), induction of pro-apoptotic molecules (transcription of BAX, Caspase3, and Caspase9), downregulation of anti-apoptotic gene Bcl-2 expression, and induction of endoplasmic reticulum stress (upregulation of IRE1, PERK, and ATF6 expression). The results suggested that the supplementation of α-lipoic acid could effectively induce humoral immunity, alleviate oxidative stress injury and endoplasmic reticulum stress, and ultimately alleviate liver injury induced by ammonia poisoning (50-60% reduction). This provides theoretical basis for revealing the toxicity of long-term ammonia stress and provides new insights into the anti-ammonia toxicity mechanism of α-lipoic acid.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Ácido Tióctico , Animais , Humanos , Carpas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Tióctico/farmacologia , Carpa Dourada/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação
16.
Macromol Rapid Commun ; 44(22): e2300420, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37775102

RESUMO

Tactile sensing is required for electronic skin and intelligent robots to function properly. However, the dielectric layer's poor structural compressibility in conventional pressure sensors results in a limited pressure sensing range and low sensitivity. To solve this issue, a flexible pressure sensor with a crocodile-inspired fillable gradient structure is provided. The fillable gradient structure and grooves in the pressure sensor accommodate the deformed microstructure that permits the enhancement of the media layer compressibility via COMSOL finite element simulation and optimization. The pressure sensor exhibits a high sensitivity of up to 0.97 k Pa-1 (0-4 kPa), a wide pressure detection range (7 Pa-380 kPa), and outstanding repeatability. The sensor can detect Morse code, robotic grabbing, and human motion monitoring. As a result, flexible sensors with a bionic fillable gradient structure pave the way for wearable devices and offer a novel method for achieving highly precise tactile perception.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Pressão , Biônica/métodos
17.
ACS Appl Mater Interfaces ; 15(39): 46347-46356, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733928

RESUMO

Flexible pressure sensors can be used in human-computer interaction and wearable electronic devices, but one main challenge is to fabricate capacitive sensors with a wide pressure range and high sensitivity. Here, we designed a capacitive pressure sensor based on a bionic cheetah leg microstructure, validated the benefits of the bionic microstructure design, and optimized the structural feature parameters using 3D printing technology. The pressure sensor inspired by the cheetah leg shape has a high sensitivity (0.75 kPa-1), a wide linear sensing range (0-280 kPa), a fast response time of roughly 80 ms, and outstanding durability (24,000 cycles). Furthermore, the sensor can recognize a finger-operated mouse, monitor human motion, and transmit Morse code information. This work demonstrates that bionic capacitive pressure sensors hold considerable promise for use in wearable devices.

18.
J Am Chem Soc ; 145(36): 19961-19968, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651158

RESUMO

The search for highly active and selective catalysts with high precious metal atom utilization efficiency has attracted increasing interest in both the fundamental synthesis of materials and important industrial reactions. Here, we report the synthesis of Pd-Cu nanocubes with a Cu core and an ordered B2 intermetallic CuPd shell with controllable atomic layers on the surface (denoted as Cu/B2 CuPd), which can efficiently and robustly catalyze the selective hydrogenation of acetylene (C2H2) to ethylene (C2H4) under mild conditions. The optimized Cu/B2 CuPd with a Pd loading of 9.5 at. % exhibited outstanding performance in the C2H2 semi-hydrogenation with 100% C2H2 conversion and 95.2% C2H4 selectivity at 90 °C. We attributed this outstanding performance to the core/shell structure with a high surface density of active Pd sites isolated by Cu in the B2 intermetallic matrix, representing a structural motif of single-atom alloys (SAAs) on the surface. The combined experimental and computational studies further revealed that the electronic states of Pd and Cu are modulated by SAAs from the synergistic effect between Pd and Cu, leading to enhanced performance compared with pristine Pd and Cu catalysts. This study provides a new synthetic methodology for making single-atom catalysts with high precious metal atom utilization efficiency, enabling simultaneous tuning of both geometric and electronic structures of Pd active sites for enhanced catalysis.

19.
Sci Total Environ ; 891: 164409, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244617

RESUMO

Nitrogen (N) has been widely used to dissipate total petroleum hydrocarbons (TPH) in the oil-contaminated soil, but the relationships of hydrocarbon transformation, N cycling and utilization, and microbial characteristics during TPH biodegradation still remain unclear. In this study, 15N tracers (K15NO3 and 15NH4Cl) were used as stimulants for TPH degradation to compare the bioremediation potential of TPH in the historically (5 a) and freshly (7 d) petroleum-contaminated soils. During bioremediation process, TPH removal and carbon balance, N transformation and utilization, as well as microbial morphologies were investigated using 15N tracing and flow cytometry. Results showed that TPH removal rates were higher in the freshly polluted soils (61.59 % for K15NO3 amendment and 48.55 % for 15NH4Cl amendment) than in the historically polluted soils (35.84 % for K15NO3 amendment and 32.30 % for 15NH4Cl amendment), and TPH removal rate through K15NO3 amendment was higher than that of 15NH4Cl in the freshly polluted soils. This result was attributed to the higher N gross transformation rates in the freshly contaminated soils (0.0034-0.432 mmol N kg-1 d-1) when compared with that in the historically contaminated soils (0.009-0.04 mmol N kg-1 d-1), which led to more TPH transformation to residual carbon (51.84 %-53.74 %) in the freshly polluted soils than that in the historically polluted soils (24.67 %-33.47 %). Based on the fluorescence intensity displayed by the combination of stains and cellular components to indicate microbial morphology and activity, flow cytometry analysis showed that nitrogen addition was beneficial for the membrane integrity of TPH-degrading bacteria, and nitrogen also enhanced DNA synthesis and activity of TPH-degrading fungi in freshly polluted soil. Correlation and structural equation modeling analysis identified that K15NO3 was beneficial to synthesize DNA of the TPH-degrading fungi but not the bacteria, which contributed to enhance TPH bio-mineralization in the soils with K15NO3 amendment.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/análise , Citometria de Fluxo , Microbiologia do Solo , Poluentes do Solo/análise , Hidrocarbonetos/análise , Biodegradação Ambiental , Bactérias/metabolismo , Solo/química
20.
Sci Total Environ ; 875: 162645, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889393

RESUMO

This study aimed to further improve the degradation efficiency of pollutants by electrochemical oxidation system and reduce the consumption of electric energy. A simple method of electrochemical exfoliation was used to modify graphite felt (GF) to prepare an anode material (Ee-GF) with high degradation performance. An anode and cathode cooperative oxidation system was constructed with Ee-GF as the anode and CuFe2O4/Cu2O/Cu@EGF as the cathode to efficiently degrade sulfamethoxazole (SMX). Complete degradation of SMX was achieved within 30 min. Compared with anodic oxidation system alone, the degradation time of SMX was reduced by half and the energy consumption was reduced by 66.8 %. The system displayed excellent performance for the degradation of different concentrations (10-50 mg L-1) of SMX, different pollutants, and under different water quality conditions. In addition, the system still maintained 91.7 % removal rate of SMX after ten consecutive runs. At least 12 degradation products and seven possible degradation routes of SMX were generated in the degradation process by the combined system. The eco-toxicity of degradation products of SMX was reduced after the proposed treatment. This study provided a theoretical basis for the safe, efficient, and low energy consumption removal of antibiotic wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA