Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Harmful Algae ; 111: 102163, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016767

RESUMO

The genus Gambierdiscus is a marine benthic/epiphytic dinoflagellate considered the causative agent of ciguatera poisoning (CP). Clarifying the geographical distribution of this genus to understand the potential risk of CP is important. Many studies have focused only on the species/phylotype composition of Gambierdiscus in shallow waters, but no study has investigated the species/phylotype composition of the genus in deep waters. In the present study, the distributions of Gambierdiscus species/phylotypes at two depths (2-8 and 30 m) and two sampling sites (temperate and subtropical) in Japan was investigated using high throughput sequencing (HTS) with a newly developed primer set that preferentially amplifies the 18S rDNA V8-V9 region of Alveolata. A phylogenetic analysis using 89 samples collected over three years revealed of ten Gambierdiscus species/phylotypes including not only two species that have not been reported in Japan (G. caribaeus and G. silvae) but also four novel phylotypes (Gambierdiscus spp. Clade II_1, Clade II_2, Clade II_3, and Clade VI_1). Uncorrected genetic distances also supported that these new phylotypes clearly diverged from other Gambierdiscus species. All four new phylotypes, G. caribaeus, and G. silvae were distributed in the subtropical region. Among them, Clade II_2, Clade VI_1, and G. silvae were also distributed in the temperate region. Four species/phylotypes previously reported from Japan showed a similar distribution as reported previously. Among the ten species/phylotypes, Gambierdiscus sp. type 3 and Clade VI_1 were found only in deep waters, whereas five species/phylotypes were observed only in shallow waters. The other three species/phylotypes were found in both deep and shallow waters. The results of the horizontal and vertical distribution suggest that the growth characteristics of each species/phylotypes found in Japan might adapt to the ambient environmental conditions. This study revealed an inclusive assemblage of Gambierdiscus species/phylotypes in Japan through metabarcoding using the Alveolata primer set. In the future, the abundance and toxicities/toxin productions of the newly reported species/phylotypes need to be clarified to understand the mechanism of CP outbreaks in Japan.


Assuntos
Ciguatera , Dinoflagellida , DNA Ribossômico/genética , Japão , Filogenia
2.
Harmful Algae ; 96: 101687, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32560839

RESUMO

In the present study, the abundance of Prorocentrum and the molecular phylogeny, distribution, and DST production of P. lima complex and P. caipirignum in Japan were investigated. First, the cell densities of Prorocentrum were assessed from the temperate to subtropical zones in Japan between 2014 and 2018. The cell density in the subtropical zone [19.0 ± 40.2 cells/g wet weight (ww) algae] was significantly higher than that in the temperate zone (1.4 ± 3.4 cells/g ww algae). A total of 244 clonal strains were established from the temperate and subtropical zones. Phylogenetic analyses based on the large-subunit ribosomal DNA D1/D2 revealed that the strains were separated into four species/species complex/phylotypes (P. lima complex, P. caipirignum, and new phylotypes Prorocentrum spp. types 1 and 2). The strains of P. lima complex could be separated into two clades (1 and 3). Furthermore, the strains of clades 1 and 3 could be separated into nine subclades (1a, 1c, 1d, 1e, 1f, 1g, 1h, 1i, and 1j) and three subclades (3a, 3b, and 3c), respectively. The strains of P. caipirignum were separated into two subclades (b and e). Each phylotype/subclade showed a unique distribution pattern in Japan: P. lima complex subclades 1a, 1c, and 3a and P. caipirignum subclades b and e were widespread from the temperate to subtropical zones. On the other hand, P. lima complex subclades 1e and 1i were restricted to the temperate zone, and P. lima complex subclades 1d, 1f, 1g, 1h, 1j, 3b, and 3c and Prorocentrum spp. types 1 and 2 were restricted to the subtropical zone. Furthermore, the DST production of the 243 clonal strains was assessed by LC/MS/MS analysis. The results revealed that all strains produced okadaic acid (OA) and that the OA contents of P. lima complex subclades 1d and 1f, P. caipirignum subclades b and e, and Prorocentrum sp. type 2 tended to be higher than those of the other subclades. While P. lima complex subclades 1a, 1e, 1f, and 1i produced DTX1, the other phylotype/subclades produced either no or low quantities of DTX1. A strain of P. lima complex subclade 1e showed the highest OA and DTX1 contents (55.27 and 70.73 pg/cell, respectively) in the world. These results suggest that there are potential risks for DST accumulation in benthic animals in Japan.


Assuntos
Dinoflagellida , Animais , Dinoflagellida/genética , Japão , Filogenia , Frutos do Mar , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA