Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(9): 2024-2031, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334705

RESUMO

Recently, colloids with an off-center fluorescent core and homogeneous composition have been developed to measure the rotational diffusivity of microparticles using 3D confocal microscopy in refractive index-matched suspensions. Here, we show that the same particles may be imaged using a standard fluorescence microscope to yield their rotational diffusion coefficients. Trajectories of the off-center core may be combined with known expressions for the correlation decay of particle orientations to determine an effective rotational diffusivity. For sedimented particles, we also find the rotational diffusivity about axes perpendicular and parallel to the interface by adding some bright field illumination and simultaneously tracking both the core and the particle. Trajectories for particles of different sizes yield excellent agreement with hydrodynamic models of rotational diffusion near flat walls, taking the sedimentation-diffusion equilibrium into account. Finally, we explore the rotational diffusivity of particles in crowded two-dimensional monolayers, finding a different reduction of the rotational motion about the two axes depending on the colloidal microstructure.

2.
J Phys Chem Lett ; 14(32): 7306-7312, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37561048

RESUMO

Recent interest in particle sorting using optical forces has grown due to its ability to separate micro- and nanomaterials based on their optical properties. Here, we present a mid-infrared optical force manipulation technique that enables precise sorting of microspheres based on their molecular vibrational properties using a mid-infrared quantum cascade laser. Utilizing the optical pushing force driven by a 9.3 µm mid-infrared evanescent field generated on a prism through total internal reflection, a variety of microspheres, including those composed of Si-O-Si bonds, can be separated in accordance with their absorbance values at 9.3 µm. The experimental results are in good agreement with the optical force calculations using finite-difference time-domain simulation. Thus, each microsphere's displacement and velocity can be predicted from the absorbance value; conversely, the optical properties (e.g., absorbance and complex refractive index in the mid-infrared region) of individual microspheres can be estimated by monitoring their velocity.

3.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551819

RESUMO

During devitrification, pre-existing crystallites grow by adding particles to their surface via a process that is either thermally activated (diffusive mode) or happens without kinetic barriers (fast crystal growth mode). It is yet unclear what factors determine the crystal growth mode and how to predict it. With simulations of repulsive hard-sphere-like (Weeks-Chandler-Andersen) glasses, we show for the first time that the same system at the same volume fraction and temperature can devitrify via both modes depending on the preparation protocol of the glass. We prepare two types of glass: conventional glass (CG) via fast quenching and uniform glass (UG) via density homogenization. First, we bring either glass into contact with a crystal (X) and find the inherent structure (CGX/UGX). During energy minimization, the crystal front grows deep into the CG interface, while the growth is minimal for UG. When thermal noise is added, this behavior is reflected in different crystallization dynamics. CGX exhibits a density drop at the crystal growth front, which correlates with enhanced dynamics at the interface and a fast growth mode. This mechanism may explain the faster crystal growth observed below the glass transition experimentally. In contrast, UGX grows via intermittent avalanche-like dynamics localized at the interface, a combination of localized mechanical defects and the exceptional mechanical stability imposed by the UG glass phase.

4.
Langmuir ; 39(15): 5306-5314, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37021809

RESUMO

We optimize and characterize the preparation of 3-trimethoxysilyl propyl methacrylate (TPM) colloidal suspensions for three-dimensional confocal microscopy. We revisit a simple synthesis of TPM microspheres by nucleation of droplets from prehydrolyzed TPM oil in a "zero-flow" regime and demonstrate how precise and reproducible control of particle size may be achieved via single-step nucleation with a focus on how the reagents are mixed. We also revamp the conventional dyeing method for TPM particles to achieve uniform transfer of a fluorophore to the organosilica droplets, improving particle identification. Finally, we illustrate how a ternary mixture of tetralin, trichloroethylene, and tetrachloroethylene may be used as a suspension medium which matches the refractive index of these particles while allowing independent control of the density mismatch between particle and solvent.

5.
J Chem Phys ; 157(22): 224903, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546802

RESUMO

We study the crystallization of colloidal dispersions under capillary-action-induced shear as the dispersion is drawn into flat walled capillaries. Using confocal microscopy and small angle x-ray scattering, we find that the shear near the capillary walls influences the crystallization to result in large random hexagonal close-packed (RHCP) crystals with long-range orientational order over tens of thousands of colloidal particles. We investigate the crystallization mechanism and find partial crystallization under shear, initiating with hexagonal planes at the capillary walls, where shear is highest, followed by epitaxial crystal growth from these hexagonal layers after the shear is stopped. We then characterize the three-dimensional crystal structure finding that the shear-induced crystallization leads to larger particle separations parallel to the shear and vorticity directions as compared to the equilibrium RHCP structure. Confocal microscopy reveals that competing shear directions, where the capillary walls meet at a corner, create differently oriented hexagonal planes of particles. The single-orientation RHCP colloidal crystals remain stable after formation and are produced without the need of complex shear cell arrangements.

6.
J Chem Phys ; 156(8): 084904, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232176

RESUMO

The gelation of colloidal particles interacting through a short-range attraction is widely recognized as a consequence of the dynamic arrest of phase separation into colloid-rich and solvent-rich phases. However, the microscopic origin behind the slowing down and dynamic arrest of phase separation remains elusive. In order to access microscopic structural changes through the entire process of gelation in a continuous fashion, we used core-shell fluorescent colloidal particles, laser scanning confocal microscopy, and a unique experimental protocol that allows us to initiate phase separation instantaneously and gently. Combining these enables us to track the trajectories of individual particles seamlessly during the whole phase-separation process from the early stage to the late arresting stage. We reveal that the enhancement of local packing and the resulting formation of locally stable rigid structures slow down the phase-separation process and arrest it to form a gel with an average coordination number of z = 6-7. This result supports a mechanical perspective on the dynamic arrest of sticky-sphere systems based on the microstructure, replacing conventional explanations based on the macroscopic vitrification of the colloid-rich phase. Our findings illuminate the microscopic mechanisms behind the dynamic arrest of colloidal phase separation, the emergence of mechanical rigidity, and the stability of colloidal gels.

7.
Phys Rev Lett ; 127(21): 215501, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860078

RESUMO

Unlike crystals, glasses age or devitrify over time, reflecting their nonequilibrium nature. This lack of stability is a serious issue in many industrial applications. Here, we show by numerical simulations that the devitrification of quasi-hard-sphere glasses is prevented by suppressing volume-fraction inhomogeneities. A monodisperse glass known to devitrify with "avalanchelike" intermittent dynamics is subjected to small iterative adjustments to particle sizes to make the local volume fractions spatially uniform. We find that this entirely prevents structural relaxation and devitrification over aging time scales, even in the presence of crystallites. There is a dramatic homogenization in the number of load-bearing nearest neighbors each particle has, indicating that ultrastable glasses may be formed via "mechanical homogenization." Our finding provides a physical principle for glass stabilization and opens a novel route to the formation of mechanically stabilized glasses.

8.
Science ; 369(6506): 950-955, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820121

RESUMO

Understanding the impact of curvature on the self-assembly of elongated microscopic building blocks, such as molecules and proteins, is key to engineering functional materials with predesigned structure. We develop model "banana-shaped" colloidal particles with tunable dimensions and curvature, whose structure and dynamics are accessible at the particle level. By heating initially straight rods made of SU-8 photoresist, we induce a controllable shape deformation that causes the rods to buckle into banana-shaped particles. We elucidate the phase behavior of differently curved colloidal bananas using confocal microscopy. Although highly curved bananas only form isotropic phases, less curved bananas exhibit very rich phase behavior, including biaxial nematic phases, polar and antipolar smectic-like phases, and even the long-predicted, elusive splay-bend nematic phase.

9.
Langmuir ; 35(24): 7962-7969, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31095907

RESUMO

We describe the synthesis and application of 3-(trimethoxysilyl)propyl methacrylate (TPM) particles as a colloidal model system for three-dimensional (3D) confocal scanning laser microscopy. The effect of the initial TPM concentration on the growth and polydispersity of the particles and a recently developed solvent transfer method to disperse particles in a refractive index and density-matching solvent mixture are reviewed and discussed. To fully characterize the system as a colloidal model, we measure the pair potential between the TPM particles directly using optical tweezers. Finally, we use 3D confocal microscopy to image a sedimentation-diffusion equilibrium of TPM particles to characterize the phase behavior and particle dynamics through successful detection and tracking of all particles in the field of view.

10.
Adv Mater ; 31(17): e1807514, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30869177

RESUMO

The bulk synthesis of fluorescent colloidal SU-8 polymer rods with tunable dimensions is described. The colloidal SU-8 rods are prepared by shearing an emulsion of SU-8 polymer droplets and then exposing the resulting non-Brownian rods to ultrasonic waves, which breaks them into colloidal rods with typical lengths of 3.5-10 µm and diameters of 0.4-1 µm. The rods are stable in both aqueous and apolar solvents, and by varying the composition of apolar solvent mixtures both the difference in refractive index and mass density between particles and solvent can be independently controlled. Consequently, these colloidal SU-8 rods can be used in both 3D confocal microscopy and optical trapping experiments while carefully tuning the effect of gravity. This is demonstrated by using confocal microscopy to image the liquid crystalline phases and the isotropic-nematic interface formed by the colloidal SU-8 rods and by optically trapping single rods in water. Finally, the simultaneous confocal imaging and optical manipulation of multiple SU-8 rods in the isotropic phase is shown.

11.
Phys Rev Lett ; 123(25): 258002, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922768

RESUMO

One of the biggest unresolved problems in crystallization phenomena is the significant discrepancy in the nucleation rate between experiments and simulations even for the simplest liquid, i.e., the hard-sphere system. A popular explanation for this discrepancy is the neglect of hydrodynamic interactions (HI) in simulation studies. By comparing simulations with and without HI, we show that the long-time diffusive dynamics of the colloids is slowed down more rapidly by hydrodynamic lubrication effects with increasing volume fraction. We find that the kinetics of both nucleation and growth are controlled by this long-time diffusion and that it is possible to account for most of the effects of HI by rescaling with this timescale. Therefore, we conclude that HI is not the primary cause of the accelerated nucleation rates observed in experiments.

12.
Nat Commun ; 8: 15954, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28660879

RESUMO

The glassy state is known to undergo slow structural relaxation, where the system progressively explores lower free-energy minima which are either amorphous (ageing) or crystalline (devitrification). Recently, there is growing interest in the unusual intermittent collective displacements of a large number of particles known as 'avalanches'. However, their structural origin and dynamics are yet to be fully addressed. Here, we study hard-sphere glasses which either crystallize or age depending on the degree of size polydispersity, and show that a small number of particles are thermodynamically driven to rearrange in regions of low density and bond orientational order. This causes a transient loss of mechanical equilibrium which facilitates a large cascade of motion. Combined with previously identified phenomenology, we have a complete kinetic pathway for structural change which is common to both ageing and crystallization. Furthermore, this suggests that transient force balance is what distinguishes glasses from supercooled liquids.

13.
J Am Chem Soc ; 136(18): 6538-41, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24750023

RESUMO

The selective hybridization of DNA is of key importance for many practical applications such as gene detection and DNA-mediated self-assembly. These applications require a quantitative prediction of the hybridization free energy. Existing methods ignore the effects of non-complementary ssDNA tails beyond the first unpaired base. We use experiments and simulations to show that the binding strength of complementary ssDNA oligomers is altered by these sequences of non-complementary nucleotides. Even a small number of non-binding bases are enough to raise the hybridization free energy by approximately 1 kcal/mol at physiological salt concentrations. We propose a simple analytical expression that accounts quantitatively for this variation as a function of tail length and salt concentration.


Assuntos
DNA/química , Hibridização de Ácido Nucleico , Termodinâmica
14.
Soft Matter ; 10(11): 1738-45, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24651991

RESUMO

We study the influence of grafted polymers on the diffusive behaviour of a colloidal particle. Our work demonstrates how such additional degrees of freedom influence the Brownian motion of the particle, focusing on internal viscoelastic coupling between the polymer and colloid. Specifically, we study the mean-squared displacements (MSDs) of λ-DNA grafted colloids using Brownian dynamics simulation. Our simulations reveal the non-trivial effect of internal modes, which gives rise to a crossover from the short-time viscoelastic to long-time diffusional behaviour. We also show that basic features can be captured by a simple theoretical model considering the relative motion of a colloid to a part of the polymer corona. This model describes well a MSD calculated from an extremely long trajectory of a single λ-DNA coated colloid from experiment and allows characterisation of the λ-DNA hairs. Our study suggests that the access to the internal relaxation modes via the colloid trajectory offers a novel method for the characterisation of soft attachments to a colloid.


Assuntos
Coloides , DNA/química , Polímeros/química , Difusão , Modelos Teóricos , Simulação de Dinâmica Molecular , Movimento (Física)
15.
Phys Rev Lett ; 107(13): 136101, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026874

RESUMO

Using videomicroscopy imaging, we demonstrate the existence of a short-ranged equilibrium attraction between heavy silica colloids diffusing on soft surfaces of cross-linked polymer gels. The intercolloid potential can be tuned by changing the gel stiffness or by coating the colloids with a polymer layer. On sufficiently soft substrates, the interaction induced by the polymer matrix leads to large-scale colloidal aggregation. We correlate the in-plane interaction with a colloid-surface attraction.

16.
J Phys Condens Matter ; 23(19): 194118, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21525547

RESUMO

We describe an approach to on-line analysis of micro-rheology data using a multi-scale time-correlation method. The method is particularly suited to processing high-volume data streams and compressing the relevant information in real time. Using this, we can obtain complex moduli of visco-elastic media without our method suffering from the high-frequency artefacts that are associated with the truncation errors in the most widely used versions of micro-rheology. Moreover, the present approach obviates the need to choose the time interval for data acquisition beforehand. We test our approach first on an artificial data set and then on experimental data obtained both for an optically trapped colloidal probe in water and for a similar probe in polyethylene glycol solutions at various concentrations. In all cases, we obtain good agreement with the bulk rheology data in the region of overlap. We compare our method with the conventional Kramers-Kronig (KK) transform approach and find that the two methods agree over most of the frequency regime. For the same data set, the present approach is superior to the KK one at high frequencies and can be made to perform at least comparably at low frequencies.


Assuntos
Coloides/química , Polietilenoglicóis/química , Reologia , Soluções/química , Água/química , Simulação por Computador , Raios Infravermelhos , Microesferas , Método de Monte Carlo , Pinças Ópticas , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA