Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Inorg Biochem ; 244: 112208, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37037142

RESUMO

Electric field effect by the positive and negative changes near the active site is an important factor for controlling the reactivity of metalloenzymes. Previously, we reported that the positive charge of the N-methyl-2-pyridinium cation increases the reactivity of oxoiron(IV) porphyrin π-cation radical complex (Compound I), due to the attractive Coulomb interaction with electrons in Compound I. To further investigate the electric field effect, we study here the effect of the negative charge of the sulfonate group on the electronic structure and reactivity using Compound I of meso-tetrakis(2,4,6-trimethyl-3-sulfonatophenyl)porphyrin (TMPS-I). Although Compound I has been known as a very unstable complex, TMPS-I is very stable in 0.1 M acetate buffer at pH = 6. The half-life of TMPS-I is estimated to be 6.9 × 103 s, which is the longest in Compound I previously reported. The redox potential of TMPS-I is estimated to be 0.76 V vs SCE in phosphate buffer, pH = 10. Kinetic analysis with stopped-flow technique indicates TMPS-I is less reactive than Compounds I reported previously. However, 1H NMR and EPR spectra of TMPS-I are very close to those of Compounds I reported previously. The DFT calculations show that the orbital energy of Compound I is drastically altered by the positive and negative charges on the meso-phenyl group, suggesting the electric field effect. The difference of the reactivity of Compound I can be rationalized with the change of the orbital energy caused by the intramolecular electric field effect of the positive and negative charges.


Assuntos
Metaloporfirinas , Porfirinas , Metaloporfirinas/química , Oxirredução , Cinética , Porfirinas/química , Cátions
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA