Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(14): 8254-8270, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38884271

RESUMO

The histone methyltransferase ASH1L, first discovered for its role in transcription, has been shown to accelerate the removal of ultraviolet (UV) light-induced cyclobutane pyrimidine dimers (CPDs) by nucleotide excision repair. Previous reports demonstrated that CPD excision is most efficient at transcriptional regulatory elements, including enhancers, relative to other genomic sites. Therefore, we analyzed DNA damage maps in ASH1L-proficient and ASH1L-deficient cells to understand how ASH1L controls enhancer stability. This comparison showed that ASH1L protects enhancer sequences against the induction of CPDs besides stimulating repair activity. ASH1L reduces CPD formation at C-containing but not at TT dinucleotides, and no protection occurs against pyrimidine-(6,4)-pyrimidone photoproducts or cisplatin crosslinks. The diminished CPD induction extends to gene promoters but excludes retrotransposons. This guardian role against CPDs in regulatory elements is associated with the presence of H3K4me3 and H3K27ac histone marks, which are known to interact with the PHD and BRD motifs of ASH1L, respectively. Molecular dynamics simulations identified a DNA-binding AT hook of ASH1L that alters the distance and dihedral angle between neighboring C nucleotides to disfavor dimerization. The loss of this protection results in a higher frequency of C->T transitions at enhancers of skin cancers carrying ASH1L mutations compared to ASH1L-intact counterparts.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Elementos Facilitadores Genéticos , Histona-Lisina N-Metiltransferase , Dímeros de Pirimidina , Humanos , Camundongos , DNA/metabolismo , DNA/química , DNA/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Histonas/genética , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Raios Ultravioleta
2.
Nat Commun ; 14(1): 3892, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393406

RESUMO

To recognize DNA adducts, nucleotide excision repair (NER) deploys the XPC sensor, which detects damage-induced helical distortions, followed by engagement of TFIIH for lesion verification. Accessory players ensure that this factor handover takes place in chromatin where DNA is tightly wrapped around histones. Here, we describe how the histone methyltransferase ASH1L, once activated by MRG15, helps XPC and TFIIH to navigate through chromatin and induce global-genome NER hotspots. Upon UV irradiation, ASH1L adds H3K4me3 all over the genome (except in active gene promoters), thus priming chromatin for XPC relocations from native to damaged DNA. The ASH1L-MRG15 complex further recruits the histone chaperone FACT to DNA lesions. In the absence of ASH1L, MRG15 or FACT, XPC is misplaced and persists on damaged DNA without being able to deliver the lesions to TFIIH. We conclude that ASH1L-MRG15 makes damage verifiable by the NER machinery through the sequential deposition of H3K4me3 and FACT.


Assuntos
Cromatina , Histonas , Histonas/genética , Reparo do DNA , Metiltransferases
3.
Trends Biochem Sci ; 48(4): 321-330, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36357311

RESUMO

The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability.


Assuntos
Cromatina , Metiltransferases , Metiltransferases/metabolismo , Metilação , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica
4.
Elife ; 82019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31169497

RESUMO

Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response.


Assuntos
Adaptação Biológica , Cruzamento/métodos , Extremidades/anatomia & histologia , Seleção Genética , Animais , Camundongos , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA