Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Immunol ; 8(83): eade5872, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205767

RESUMO

Follicular CD8+ T cells (fCD8) mediate surveillance in lymph node (LN) germinal centers against lymphotropic infections and cancers, but the precise mechanisms by which these cells mediate immune control remain incompletely resolved. To address this, we investigated functionality, clonotypic compartmentalization, spatial localization, phenotypic characteristics, and transcriptional profiles of LN-resident virus-specific CD8+ T cells in persons who control HIV without medications. Antigen-induced proliferative and cytolytic potential consistently distinguished spontaneous controllers from noncontrollers. T cell receptor analysis revealed complete clonotypic overlap between peripheral and LN-resident HIV-specific CD8+ T cells. Transcriptional analysis of LN CD8+ T cells revealed gene signatures of inflammatory chemotaxis and antigen-induced effector function. In HIV controllers, the cytotoxic effectors perforin and granzyme B were elevated among virus-specific CXCR5+ fCD8s proximate to foci of HIV RNA within germinal centers. These results provide evidence consistent with cytolytic control of lymphotropic infection supported by inflammatory recruitment, antigen-specific proliferation, and cytotoxicity of fCD8s.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Humanos , Centro Germinativo , Linfonodos , Replicação Viral
2.
Immunity ; 54(10): 2372-2384.e7, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34496223

RESUMO

Spontaneous control of HIV infection has been repeatedly linked to antiviral CD8+ T cells but is not always permanent. To address mechanisms of durable and aborted control of viremia, we evaluated immunologic and virologic parameters longitudinally among 34 HIV-infected subjects with differential outcomes. Despite sustained recognition of autologous virus, HIV-specific proliferative and cytolytic T cell effector functions became selectively and intrinsically impaired prior to aborted control. Longitudinal transcriptomic profiling of functionally impaired HIV-specific CD8+ T cells revealed altered expression of genes related to activation, cytokine-mediated signaling, and cell cycle regulation, including increased expression of the antiproliferative transcription factor KLF2 but not of genes associated with canonical exhaustion. Lymphoid HIV-specific CD8+ T cells also exhibited poor functionality during aborted control relative to durable control. Our results identify selective functional impairment of HIV-specific CD8+ T cells as prognostic of impending aborted HIV control, with implications for clinical monitoring and immunotherapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Viremia/imunologia , Viremia/virologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva
3.
Front Immunol ; 10: 2109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552045

RESUMO

As the AIDS epidemic unfolded, the appearance of opportunistic infections in at-risk persons provided clues to the underlying problem: a dramatic defect in cell-mediated immunity associated with infection and depletion of CD4+ T lymphocytes. Moreover, the emergence of HIV-associated malignancies in these same individuals was a clear indication of the significant role effective cellular immunity plays in combating cancers. As research in the HIV field progressed, advances included the first demonstration of the role of PD-1 in human T cell exhaustion, and the development of gene-modified T cell therapies, including chimeric antigen receptor (CAR) T cells. In the intervening years, the oncology field has capitalized on these advances, effectively mobilizing the cellular immune response to achieve immune-mediated remission or cure of previously intractable cancers. Although similar therapeutic advances have not yet been achieved in the HIV field, spontaneous CD8+ T cell mediated remission or functional cure of HIV infection does occur in very small subset of individuals in the absence of anti-retroviral therapy (ART). This has many similarities to the CD8+ T cell mediated functional control or elimination of cancers, and indicates that immunotherapy for HIV is a rational goal. In HIV infection, one major barrier to successful immunotherapy is the small, persistent population of infected CD4+ T cells, the viral reservoir, which evades pharmacological and immune-mediated clearance, and is largely maintained in secondary lymphoid tissues at sites where CD8+ T cells have limited access and/or function. The reservoir-enriched lymphoid microenvironment bears a striking resemblance to the tumor microenvironment of many solid tumors-namely high levels of anti-inflammatory cytokines, expression of co-inhibitory receptors, and physical exclusion of immune effector cells. Here, we review the parallels between CD8+ T cell-mediated immune control of HIV and cancer, and how advances in cancer immunotherapy may provide insights to direct the development of effective HIV cure strategies. Specifically, understanding the impact of the tissue microenvironment on T cell function and development of CAR T cells and therapeutic vaccines deserve robust attention on the path toward a CD8+ T cell mediated cure of HIV infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Imunoterapia Adotiva/métodos , Tecido Linfoide/virologia , Neoplasias/imunologia , Animais , Linfócitos T CD4-Positivos/transplante , Infecções por HIV/terapia , Humanos , Tolerância Imunológica , Imunidade Celular , Neoplasias/terapia , Receptor de Morte Celular Programada 1/metabolismo , Remissão Espontânea , Microambiente Tumoral , Latência Viral
4.
Cancer Res ; 77(3): 613-622, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879264

RESUMO

Small molecules and antisense oligonucleotides that inhibit the translation initiation factors eIF4A1 and eIF4E have been explored as broad-based therapeutic agents for cancer treatment, based on the frequent upregulation of these two subunits of the eIF4F cap-binding complex in many cancer cells. Here, we provide support for these therapeutic approaches with mechanistic studies of eIF4F-driven tumor progression in a preclinical model of melanoma. Silencing eIF4A1 or eIF4E decreases melanoma proliferation and invasion. There were common effects on the level of cell-cycle proteins that could explain the antiproliferative effects in vitro Using clinical specimens, we correlate the common cell-cycle targets of eIF4A1 and eIF4E with patient survival. Finally, comparative proteomic and transcriptomic analyses reveal extensive mechanistic divergence in response to eIF4A1 or eIF4E silencing. Current models indicate that eIF4A1 and eIF4E function together through the 5'UTR to increase translation of oncogenes. In contrast, our data demonstrate that the common effects of eIF4A1 and eIF4E on translation are mediated by the coding region and 3'UTR. Moreover, their divergent effects occur through the 5'UTR. Overall, our work shows that it will be important to evaluate subunit-specific inhibitors of eIF4F in different disease contexts to fully understand their anticancer actions. Cancer Res; 77(3); 613-22. ©2016 AACR.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Espectrometria de Massas , Melanoma/patologia , Proteoma , Proteômica , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA