Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406407, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862386

RESUMO

The design of admire hydrogel networks is of both practical and fundamental importance for diverse applications of hydrogels. Herein a general strategy of acid-assisted training is designed to enable multiple improvement of conventional poly (sodium acrylate) networks for hydrogels. Hydrophobic homogeneous crosslinked poly (sodium acrylate) hydrogels are prepared to verify the strategy. The acid-assisted training is simply achieved by immersing the hydrogel networks into 4 M H2SO4 solutions. The introduced acids would induce transformation of poly (sodium acrylate) into poly (acrylic acid) at hydrogel surface, which constructs dynamic hydrogen bonding interactions to tighten the network. The acid-containing poly (sodium acrylate) hydrogels newly generate anti-swelling and self-healing performance, and show mechanical improvement. The internal poly (sodium acrylate) of the pristine acid-containing hydrogels is further fully transformed via acid-infiltration after following cyclic stretch/release training to significantly improve the mechanical performance. The Young's modulus, stress, and toughness of the fully-trained hydrogels are 187.6 times, 35.6 times, and 5.4 times enhanced, respectively. The polymeric networks retain isotropic in fully-trained hydrogels to ensure superior stretchability of 8.6. The acid-assisted training performance of the hydrogels can be reversibly recovered by NaOH neutralization. The acid-assisted training strategy here is general for poly (sodium acrylate) hydrogels.

2.
ACS Nano ; 17(22): 23194-23206, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37926964

RESUMO

Design of admirable conductive hydrogels combining robust toughness, soft flexibility, desirable conductivity, and freezing resistance remains daunting challenges for meeting the customized and critical demands of flexible and wearable electronics. Herein, a promising and facile strategy to prepare hydrogels tailored to these anticipated demands is proposed, which is prepared in one step by homogeneous cross-linking of acrylamide using hydrophobic divinylbenzene stabilized by micelles under saturated high-saline solutions. The influence of high-saline environments on the hydrogel topology and mechanical performance is investigated. The high-saline environments suppress the size of hydrophobic cross-linkers in micelles during hydrogel polymerization, which weaken the dynamic hydrophobic associations to soften the hydrogels. Nevertheless, the homogeneous cross-linked networks ensure antifracture during ultralarge deformations. The obtained hydrogels show special mechanical performance combining extremely soft deformability and antifracture features (Young's modulus, 5 kPa; stretchability, 10200%; toughness, 134 kJ m-2; and excellent anticrack propagation). The saturated-saline environments also endow the hydrogels with desirable ion conductivity (106 mS cm-1) and freezing resistance (<20 °C). These comprehensive properties of the obtained hydrogels are quite suitable for flexible electronic applications, which is demonstrated by the high sensitivity and durability of the derived strain sensors.

3.
Adv Sci (Weinh) ; 10(23): e2302342, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37289105

RESUMO

Design of hydrogels with superior flexible deformability, anti-fracture toughness, and reliable environment adaption is fundamentally and practically important for diverse hydrogel-based flexible devices. However, these features can hardly be compatible even in elaborately designed hydrogels. Herein soft hydrogel networks with superior anti-fracture and deformability are proposed, which show good adaption to extremely harsh saline or alkaline environments. The hydrogel network is one-step constructed via hydrophobic homogenous cross-linking of poly (sodium acrylate), which is expected to provide hydrophobic associations and homogeneous cross-linking for energy dissipation. The obtained hydrogels are quite soft and deformable (tensile modulus: ≈20 kPa, stretchability: 3700%), but show excellent anti-fracture toughness (10.6 kJ m-2 ). The energy dissipation mechanism can be further intensified under saline or alkaline environments. The mechanical performance of the hydrophobic cross-linking topology is inspired rather than weakened by extremely saline or alkaline environments (stretchability: 3900% and 5100%, toughness: 16.1 and 17.1 kJ m-2 under saturated NaCl and 6 mol L-1 NaOH environments, respectively). The hydrogel network also shows good performance in reversible deformations, ion conductivity, sensing strain, monitoring human motions, and freezing resistance under high-saline environments. The hydrogel network show unique mechanical performance and robust environment adaption, which is quite promising for diverse applications.

4.
Adv Mater ; 34(40): e2206904, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36000832

RESUMO

Design of tough hydrogels maintaining structural integrity under multivariable mechanical loads remains hugely challenging because the anticipated characteristics such as stretchability, strength, toughness, and fracture resistance can hardly be compatible. Herein, a simple but robust hydrogel network formed by copolymerization of divinyl benzene with acrylamide in micellar solutions for ultra-high fracture resistance and self-recoverable stretchability is proposed. The network provides dynamic association of hydrophobic domains and homogeneous crosslinking of hydrophilic chains, which shows step-by-step deformation process. The dynamic associations allow recoverable small deformations, then the homogeneous crosslinking ensures reversible unfolding and alignment of polymer chains to self-strengthen for ultra-large deformations without crack propagations. The resultant hydrogels exhibit comprehensive unbreakable feature with self-recoverable ultra-high stretchability (100% recovery from 10 200% strain), superior fracture resistance (toughness > 26 kJ m-2 ), and anticrack propagation and fatigue (fatigue threshold: ≈2.5 kJ m-2 ). Even the prenotched hydrogels can undergo tens cyclic loads at 10 200% strain and thousands cyclic loads at 200% strain without noticeable changes in mechanical performance. The robust network prepared from homogeneous hydrophobic crosslinking provides a facile approach and a new mechanism to explore tough hydrogels with superior antifracture and extreme self-recoverable deformability for diverse applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA