Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; : e202400599, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417693

RESUMO

Cancer has long been a significant threat to human life and health. The advent of immune checkpoint blockade strategies has reversed cancer-induced immune suppression, advanced the development of immunotherapy, and offered new hope in the fight against cancer. Aptamers, which possess the same specificity and affinity as antibodies, are advantageous due to their synthetic accessibility and ease of modification, providing novel insights for immune checkpoint research. In this review, we outline the key aptamers currently developed for immune checkpoints such as CTLA-4, PD-1, PD-L1 and Siglec-15. We explore their potential in therapeutic strategies, including functionalizing or engineering aptamers for covalent binding, valency control, and nanostructure assembly, as well as investigating molecular mechanisms such as glycosylated protein functions and cell-cell interactions. Finally, the future applications of aptamers in immunotherapy are discussed.

2.
J Am Chem Soc ; 145(23): 12812-12822, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37249527

RESUMO

Life molecules' distributions in live systems construct the complex dynamic reaction networks, whereas it is still challenging to demonstrate the dynamic distributions of biomolecules in live systems. Herein, we proposed a dynamic analysis strategy via sequence-structure bispecific RNA with state-adjustable molecules to monitor the dynamic concentration and spatiotemporal localization of these biomolecules in live cells based on the new insight of fluorescent RNA (FLRNA) interactions and their mechanism of fluorescence enhancement. Typically, computer-based nucleic acid-molecular docking simulation and molecular theoretical calculation have been proposed to provide a simple and straightforward method for guiding the custom-design of FLRNA. Impressively, a novel FLRNA with sequence and structure bispecific RNA named as a structure-switching aptamer (SSA) was introduced to monitor the real-time concentration and spatiotemporal localization of biomolecules, contributing to a deeper insight of the dynamic monitoring and visualization of biomolecules in live systems.


Assuntos
Corantes Fluorescentes , RNA , RNA/química , Simulação de Acoplamento Molecular , Corantes Fluorescentes/química
3.
Sci China Chem ; 65(3): 630-640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126481

RESUMO

Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics (DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection. The RCD platform demonstrated a high level of sensitivity, specificity (no false positives or negatives), speed (≤30 min), automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of qPCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s11426-021-1169-1.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 22(1): 75-8, 2002 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-12940033

RESUMO

A method based on focused microwave extraction for leaching 9 trace elements in traditional Chinese medicine Long Dan Cao was introduced. An online C18 enrichment-separation system and an HP4500 ICP mass spectrometer with a flow injection system was established for the separation and determination of inorganic speciation and organic speciation of the selected elements. Orthogonal design was applied for the optimization of microwave leaching conditions. The results showed that the temperature was the major factor for the leaching recoveries.


Assuntos
Medicamentos de Ervas Chinesas/química , Gentiana/química , Oligoelementos/análise , Cálcio/análise , Cobre/análise , Análise de Injeção de Fluxo/métodos , Ferro/análise , Espectrometria de Massas/métodos , Micro-Ondas , Raízes de Plantas/química , Espectrofotometria Atômica/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA