Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39108494

RESUMO

Initially focused on the European population, multiple genome-wide association studies (GWAS) of complex diseases, such as type-2 diabetes (T2D), have now extended to other populations. However, to date, few ancestry-matched omics datasets have been generated or further integrated with the disease GWAS to nominate the key genes and/or molecular traits underlying the disease risk loci. In this study, we generated and integrated plasma proteomics and metabolomics with array-based genotype datasets of European (EUR) and African (AFR) ancestries to identify ancestry-specific muti-omics quantitative trait loci (QTLs). We further applied these QTLs to ancestry-stratified T2D risk to pinpoint key proteins and metabolites underlying the disease-associated genetic loci. We nominated five proteins and four metabolites in the European group and one protein and one metabolite in the African group to be part of the molecular pathways of T2D risk in an ancestry-stratified manner. Our study demonstrates the integration of genetic and omic studies of different ancestries can be used to identify distinct effector molecular traits underlying the same disease across diverse populations. Specifically, in the AFR proteomic findings on T2D, we prioritized the protein QSOX2; while in the AFR metabolomic findings, we pinpointed the metabolite GlcNAc sulfate conjugate of C21H34O2 steroid. Neither of these findings overlapped with the corresponding EUR results.

2.
Res Sq ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39011113

RESUMO

Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia with no specific mechanism-based treatment. We used Mendelian randomization to combine a unique cerebrospinal fluid (CSF) and plasma pQTL resource with the latest European-ancestry GWAS of MRI-markers of cSVD (white matter hyperintensities, perivascular spaces). We describe a new biological fingerprint of 49 protein-cSVD associations, predominantly in the CSF. We implemented a multipronged follow-up, across fluids, platforms, and ancestries (Europeans and East-Asian), including testing associations of direct plasma protein measurements with MRI-cSVD. We highlight 16 proteins robustly associated in both CSF and plasma, with 24/4 proteins identified in CSF/plasma only. cSVD-proteins were enriched in extracellular matrix and immune response pathways, and in genes enriched in microglia and specific microglial states (integration with single-nucleus RNA sequencing). Immune-related proteins were associated with MRI-cSVD already at age twenty. Half of cSVD-proteins were associated with stroke, dementia, or both, and seven cSVD-proteins are targets for known drugs (used for other indications in directions compatible with beneficial therapeutic effects. This first cSVD proteogenomic signature opens new avenues for biomarker and therapeutic developments.

3.
Alzheimers Dement ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077866

RESUMO

INTRODUCTION: Plasma has been proposed as an alternative to cerebrospinal fluid (CSF) for measuring Alzheimer's disease (AD) biomarkers, but no studies have analyzed in detail which biofluid is more informative for genetics studies of AD. METHOD: Eleven proteins associated with AD (α-synuclein, apolipoprotein E [apoE], CLU, GFAP, GRN, NfL, NRGN, SNAP-25, TREM2, VILIP-1, YKL-40) were assessed in plasma (n = 2317) and CSF (n = 3107). Both plasma and CSF genome-wide association study (GWAS) analyses were performed for each protein, followed by functional annotation. Additional characterization for each biomarker included calculation of correlations and predictive power. RESULTS: Eighteen plasma protein quantitative train loci (pQTLs) associated with 10 proteins and 16 CSF pQTLs associated with 9 proteins were identified. Plasma and CSF shared some genetic loci, but protein levels between tissues correlated weakly. CSF protein levels better associated with AD compared to plasma. DISCUSSION: The present results indicate that CSF is more informative than plasma for genetic studies in AD. HIGHLIGHTS: The identification of novel protein quantitative trait loci (pQTLs) in both plasma and cerebrospinal fluid (CSF). Plasma and CSF levels of neurodegeneration-related proteins correlated weakly. CSF is more informative than plasma for genetic studies of Alzheimer's disease (AD). Neurofilament light (NfL), triggering receptor expressed on myeloid cells 2 (TREM2), and chitinase-3-like protein 1 (YKL-40) tend to show relatively strong inter-tissue associations. A novel signal in the apolipoprotein E (APOE) region was identified, which is an eQTL for APOC1.

4.
Sci Data ; 11(1): 387, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627416

RESUMO

Comprehensive expression quantitative trait loci studies have been instrumental for understanding tissue-specific gene regulation and pinpointing functional genes for disease-associated loci in a tissue-specific manner. Compared to gene expressions, proteins more directly affect various biological processes, often dysregulated in disease, and are important drug targets. We previously performed and identified tissue-specific protein quantitative trait loci in brain, cerebrospinal fluid, and plasma. We now enhance this work by analyzing more proteins (1,300 versus 1,079) and an almost twofold increase in high quality imputed genetic variants (8.4 million versus 4.4 million) by using TOPMed reference panel. We identified 38 genomic regions associated with 43 proteins in brain, 150 regions associated with 247 proteins in cerebrospinal fluid, and 95 regions associated with 145 proteins in plasma. Compared to our previous study, this study newly identified 12 loci in brain, 30 loci in cerebrospinal fluid, and 22 loci in plasma. Our improved genomic atlas uncovers the genetic control of protein regulation across multiple tissues. These resources are accessible through the Online Neurodegenerative Trait Integrative Multi-Omics Explorer for use by the scientific community.


Assuntos
Regulação da Expressão Gênica , Proteoma , Locos de Características Quantitativas , Humanos , Encéfalo , Estudo de Associação Genômica Ampla , Genômica , Fenótipo , Proteoma/genética , Plasma , Líquido Cefalorraquidiano
5.
Mol Neurodegener ; 19(1): 1, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172904

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Estudo de Associação Genômica Ampla , Microglia/patologia , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA