RESUMO
Traumatic brain injury (TBI) is a global public-health problem. Astrocytes, and their mitochondria, are important factors in the pathogenesis of TBI-induced secondary injury. Mitochondria extracted from healthy tissues and then transplanted have shown promise in models of a variety of diseases. However, the effect on recipient astrocytes is unclear. Here, we isolated primary astrocytes from newborn C57BL/6 mice, one portion of which was used to isolate mitochondria, and another was subjected to stretch injury (SI) followed by transplantation of the isolated mitochondria. After incubation for 12 h, cell viability, mitochondrial dysfunction, calcium overload, redox stress, inflammatory response, and apoptosis were improved. Live-cell imaging showed that the transplanted mitochondria were incorporated into injured astrocytes and fused with their mitochondrial networks, which was in accordance with the changes in the expression levels of markers of mitochondrial dynamics. The astrocytic IKK/NF-κB pathway was decelerated whereas the AMPK/PGC-1α pathway was accelerated by transplantation. Together, these results indicate that exogenous mitochondria from untreated astrocytes can be incorporated into injured astrocytes and fuse with their mitochondrial networks, improving cell viability by ameliorating mitochondrial dysfunction, redox stress, calcium overload, and inflammation.
Assuntos
Astrócitos , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Mitocôndrias , Animais , Astrócitos/metabolismo , Mitocôndrias/metabolismo , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Apoptose , Cálcio/metabolismo , Dinâmica MitocondrialRESUMO
BACKGROUND: Assessing the glymphatic function using diffusion tensor image analysis along the perivascular space (DTI-ALPS) may be helpful for mild traumatic brain injury (mTBI) management. PURPOSE: To assess glymphatic function using DTI-ALPS and its associations with global white matter damage and cognitive impairment in mTBI. STUDY TYPE: Prospective. POPULATION: Thirty-four controls (44.1% female, mean age 49.2 years) and 58 mTBI subjects (43.1% female, mean age 48.7 years), including uncomplicated mTBI (N = 32) and complicated mTBI (N = 26). FIELD STRENGTH/SEQUENCE: 3-T, single-shot echo-planar imaging sequence. ASSESSMENT: Magnetic resonance imaging (MRI) was done within 1 month since injury. DTI-ALPS was performed to assess glymphatic function, and peak width of skeletonized mean diffusivity (PSMD) was used to assess global white matter damage. Cognitive tests included Auditory Verbal Learning Test and Digit Span Test (forward and backward). STATISTICAL TESTS: Neuroimaging findings comparisons were done between mTBI and control groups. Partial correlation and multivariable linear regression assessed the associations between DTI-ALPS, PSMD, and cognitive impairment. Mediation effects of PSMD on the relationship between DTI-ALPS and cognitive impairment were explored. P-value <0.05 was considered statistically significant, except for cognitive correlational analyses with a Bonferroni-corrected P-value set at 0.05/3 ≈ 0.017. RESULTS: mTBI showed lower DTI-ALPS and higher PSMD, especially in complicated mTBI. DTI-ALPS was significantly correlated with verbal memory (r = 0.566), attention abilities (r = 0.792), executive function (r = 0.618), and PSMD (r = -0.533). DTI-ALPS was associated with verbal memory (ß = 8.77, 95% confidence interval [CI] 5.00, 12.54), attention abilities (ß = 5.67, 95% CI 4.56, 6.97), executive function (ß = 2.34, 95% CI 1.49, 3.20), and PSMD (ß = -0.79, 95% CI -1.15, -0.43). PSMD mediated 46.29%, 20.46%, and 24.36% of the effects for the relationship between DTI-ALPS and verbal memory, attention abilities, and executive function. DATA CONCLUSION: Glymphatic function may be impaired in mTBI reflected by DTI-ALPS. Glymphatic dysfunction may cause cognitive impairment related to global white matter damage after mTBI. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Assuntos
Concussão Encefálica , Disfunção Cognitiva , Sistema Glinfático , Substância Branca , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Estudos Prospectivos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologiaRESUMO
BACKGROUND: According to the pathoanatomic classification system, progressive hemorrhagic injury (PHI) can be categorized into progressive intraparenchymal contusion or hematoma (pIPCH), epidural hematoma (pEDH), subdural hematoma (pSDH), and traumatic subarachnoid hemorrhage (ptSAH). The clinical features of each type differ greatly. The objective of this study was to determine the predictors, clinical management, and outcomes of PHI according to this classification. METHODS: Multivariate logistic regression analysis was used to identify independent risk factors for PHI and each subgroup. Patients with IPCH or EDH were selected for subgroup propensity score matching (PSM) to exclude confounding factors before evaluating the association of hematoma progression with the outcomes by classification. RESULTS: In the present cohort of 419 patients, 123 (29.4%) demonstrated PHI by serial CT scan. Of them, progressive ICPH (58.5%) was the most common type, followed by pEDH (28.5%), pSDH (9.8%), and ptSAH (3.2%). Old age (≥ 60 years), lower motor Glasgow Coma Scale score, larger primary lesion volume, and higher level of D-dimer were independent risk factors related to PHI. These factors were also independent predictors for pIPCH, but not for pEDH. The time to first CT scan and presence of skull linear fracture were robust risk factors for pEDH. After PSM, the 6-month mortality and unfavorable survival rates were significantly higher in the pIPCH group than the non-pIPCH group (24.2% vs. 1.8% and 12.1% vs. 7.3%, respectively, p < 0.001), but not significantly different between the pEDH group and the non-pEDH group. CONCLUSIONS: Understanding the specific patterns of PHI according to its classification can help early recognition and suggest targeted prevention or treatment strategies to improve patients' neurological outcomes.
Assuntos
Lesões Encefálicas Traumáticas , Hemorragia Subaracnoídea Traumática , Humanos , Pessoa de Meia-Idade , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/epidemiologia , Fatores de Risco , Hematoma Subdural , Hemorragia Subaracnoídea Traumática/complicações , Tomografia Computadorizada por Raios X , Escala de Coma de Glasgow , Estudos RetrospectivosRESUMO
Studies have found that the phosphatase actin regulatory factor 1 expression can be related to stroke, but it remains unclear whether changes in phosphatase actin regulatory factor 1 expression also play a role in traumatic brain injury. In this study we found that, in a mouse model of traumatic brain injury induced by controlled cortical impact, phosphatase actin regulatory factor 1 expression is increased in endothelial cells, neurons, astrocytes, and microglia. When we overexpressed phosphatase actin regulatory factor 1 by injection an adeno-associated virus vector into the contused area in the traumatic brain injury mice, the water content of the brain tissue increased. However, when phosphatase actin regulatory factor 1 was knocked down, the water content decreased. We also found that inhibiting phosphatase actin regulatory factor 1 expression regulated the nuclear factor kappa B signaling pathway, decreased blood-brain barrier permeability, reduced aquaporin 4 and intercellular adhesion molecule 1 expression, inhibited neuroinflammation, and neuronal apoptosis, thereby improving neurological function. The findings from this study indicate that phosphatase actin regulatory factor 1 may be a potential therapeutic target for traumatic brain injury.
RESUMO
Sirtuin 2 (SIRT2) inhibition or Sirt2 knockout in animal models protects against the development of neurodegenerative diseases and cerebral ischemia. However, the role of SIRT2 in traumatic brain injury (TBI) remains unclear. In this study, we found that knockout of Sirt2 in a mouse model of TBI reduced brain edema, attenuated disruption of the blood-brain barrier, decreased expression of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, reduced the activity of the effector caspase-1, reduced neuroinflammation and neuronal pyroptosis, and improved neurological function. Knockout of Sirt2 in a mechanical stretch injury cell model in vitro also decreased expression of the NLRP3 inflammasome and pyroptosis. Our findings suggest that knockout of Sirt2 is neuroprotective against TBI; therefore, Sirt2 could be a novel target for TBI treatment.
RESUMO
Objective: To investigate the association of MRI-visible perivascular spaces (PVS) with cognitive impairment in military veterans with traumatic brain injury (TBI), and whether cerebrospinal fluid (CSF) p-tau and Aß mediate this effect. Materials and Methods: We included 55 Vietnam War veterans with a history of TBI and 52 non-TBI Vietnam War veterans from the Department of Defense Alzheimer's Disease Neuroimaging Initiative (ADNI) database. All the subjects had brain MRI, CSF p-tau, Aß, and neuropsychological examinations. MRI-visible PVS number and grade were rated on MRI in the centrum semiovale (CSO-PVS) and basal ganglia (BG-PVS). Multiple linear regression was performed to assess the association between MRI-visible PVS and cognitive impairment and the interaction effect of TBI. Additionally, mediation effect of CSF biomarkers on the relationship between MRI-visible PVS and cognitive impairment was explored in TBI group. Results: Compared with military control, TBI group had higher CSO-PVS number (p = 0.001), CSF p-tau (p = 0.022) and poorer performance in verbal memory (p = 0.022). High CSO-PVS number was associated with poor verbal memory in TBI group (ß = -0.039, 95% CI -0.062, -0.016), but not in military control group (ß = 0.019, 95% CI -0.004, 0.043) (p-interaction = 0.003). Further mediation analysis revealed that CSF p-tau had a significant indirect effect (ß = -0.009, 95% CI: -0.022 -0.001, p = 0.001) and mediated 18.75% effect for the relationship between CSO-PVS and verbal memory in TBI group. Conclusion: MRI-visible CSO-PVS was more common in Vietnam War veterans with a history of TBI and was associated with poor verbal memory, mediated partially by CSF p-tau.
RESUMO
Urolithin A (UA) is a natural metabolite produced from polyphenolics in foods such as pomegranates, berries, and nuts. UA is neuroprotective against Parkinson's disease, Alzheimer's disease, and cerebral hemorrhage. However, its effect against traumatic brain injury remains unknown. In this study, we established adult C57BL/6J mouse models of traumatic brain injury by controlled cortical impact and then intraperitoneally administered UA. We found that UA greatly reduced brain edema; increased the expression of tight junction proteins in injured cortex; increased the immunopositivity of two neuronal autophagy markers, microtubule-associated protein 1A/B light chain 3A/B (LC3) and p62; downregulated protein kinase B (Akt) and mammalian target of rapamycin (mTOR), two regulators of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway; decreased the phosphorylation levels of inhibitor of NFκB (IκB) kinase alpha (IKKα) and nuclear factor kappa B (NFκB), two regulators of the neuroinflammation-related Akt/IKK/NFκB signaling pathway; reduced blood-brain barrier permeability and neuronal apoptosis in injured cortex; and improved mouse neurological function. These findings suggest that UA may be a candidate drug for the treatment of traumatic brain injury, and its neuroprotective effects may be mediated by inhibition of the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways, thus reducing neuroinflammation and enhancing autophagy.
RESUMO
Our previous study showed that cell cycle exit and neuronal differentiation 1 (CEND1) may participate in neural stem cell cycle exit and oriented differentiation. However, whether CEND1-transfected neural stem cells can improve the prognosis of traumatic brain injury remained unclear. In this study, we performed quantitative proteomic analysis and found that after traumatic brain injury, CEND1 expression was downregulated in mouse brain tissue. Three days after traumatic brain injury, we transplanted CEND1-transfected neural stem cells into the area surrounding the injury site. We found that at 5 weeks after traumatic brain injury, transplantation of CEND1-transfected neural stem cells markedly alleviated brain atrophy and greatly improved neurological function. In vivo and in vitro results indicate that CEND1 overexpression inhibited the proliferation of neural stem cells, but significantly promoted their neuronal differentiation. Additionally, CEND1 overexpression reduced protein levels of Notch1 and cyclin D1, but increased levels of p21 in CEND1-transfected neural stem cells. Treatment with CEND1-transfected neural stem cells was superior to similar treatment without CEND1 transfection. These findings suggest that transplantation of CEND1-transfected neural stem cells is a promising cell therapy for traumatic brain injury. This study was approved by the Animal Ethics Committee of the School of Biomedical Engineering of Shanghai Jiao Tong University, China (approval No. 2016034) on November 25, 2016.
RESUMO
Aloin is a small-molecule drug well known for its protective actions in various models of damage. Traumatic brain injury (TBI)-induced cerebral edema from secondary damage caused by disruption of the blood-brain barrier (BBB) often leads to an adverse prognosis. Since the role of aloin in maintaining the integrity of the BBB after TBI remains unclear, we explored the protective effects of aloin on the BBB using in vivo and in vitro TBI models. Adult male C57BL/6 mice underwent controlled cortical impact injury, and mouse brain capillary endothelial bEnd.3 cells underwent biaxial stretch injury, then both received aloin treatment. In the animal experiments, we found 20 mg/kg aloin to be the optimum concentration to decrease cerebral edema, decrease disruption of the BBB, and improve neurobehavioral performance after cortical impact injury. In the cellular studies, the optimum concentration of 40 µg/mL aloin reduced apoptosis and reversed the loss of tight junctions by reducing the reactive oxygen species levels and changes in mitochondrial membrane potential after stretch injury. The mechanisms may be that aloin downregulates the phosphorylation of p38 mitogen-activated protein kinase, the activation of p65 nuclear factor-kappa B, and the ratios of B cell lymphoma (Bcl)-2-associated X protein/Bcl-2 and cleaved caspase-3/caspase-3. We conclude that aloin exhibits these protective effects on the BBB after TBI through its anti-oxidative stress and anti-apoptotic properties in mouse brain capillary endothelial cells. Aloin may thus be a promising therapeutic drug for TBI.
Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas , Emodina/análogos & derivados , Células Endoteliais/efeitos dos fármacos , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Modelos Animais de Doenças , Emodina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse MecânicoRESUMO
BACKGROUND: Gliomas are usually located in the supratentorial region and are extremely rare at the cerebellopontine angle (CPA). Consequently, gliomas in the CPA are easy to misdiagnose preoperatively. CASE DESCRIPTION: This paper presents a 55-year-old man with an extraaxial CPA glioblastoma arising from the proximal portion of cranial nerve (CN) VIII. Preoperative imaging findings suggested an acoustic neuroma. The tumor was removed subtotally, and it was completely separated from the brainstem and cerebellum. The histopathologic examination showed a glioblastoma. CONCLUSIONS: To our knowledge, this case is the second report of a true primary extraaxial CPA glioblastoma. Therefore glioma should be considered in the differential diagnosis of CPA masses with atypical imaging features, although they are extremely rare.
Assuntos
Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/cirurgia , Ângulo Cerebelopontino , Glioblastoma/diagnóstico , Glioblastoma/cirurgia , Neoplasias Cerebelares/patologia , Diagnóstico Diferencial , Evolução Fatal , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neuroma Acústico/diagnóstico , Pneumonia AspirativaRESUMO
Transient receptor potential vanilloid 1 (TRPV1) is expressed widely in the central nervous system and is activated by various stimuli. Inhibiting TRPV1 has neuroprotective effects in cerebral ischemia. The role of inhibiting TRPV1 to maintain blood-brain barrier (BBB) integrity after traumatic brain injury (TBI) remains unclear, however. Therefore, we investigated the effects of capsazepine-mediated TRPV1 inhibition on the BBB in a mouse model of TBI. Adult male C57BL/6 mice underwent controlled cortical impact injury and received capsazepine (1 µmol/kg body weight, twice daily, intraperitoneally) until sacrifice. Further, mouse brain microvascular endothelial (bEnd.3) cells were cultured and underwent biaxial stretch injury to investigate the mechanisms underlying the protective effects of capsazepine. The TRPV1 expression was upregulated in the pericontusional area after TBI, peaking at 24 h post-TBI. Capsazepine-treated mice demonstrated decreased brain edema (p = 0.010), Evans Blue extravasation (p = 0.001), tissue hemoglobin levels (p = 0.002), and loss of tight junction proteins (p = 0.016 ZO-1 expression; p = 0.013 occludin expression) after TBI compared with the vehicle-treated group. Capsazepine significantly alleviated early-stage apoptosis by attenuating activation of JNK, P38, and caspase-3, resulting in a protective effect on the level of ZO-1 in bEnd.3 cells after stretch injury. We conclude that the expression of TRPV1 is upregulated after TBI, and inhibition of TRPV1 attenuated disruption of the BBB in a mouse model of TBI, at least partly, through its antiapoptotic effects on brain endothelial cells. Blocking TRPV1 may be a promising pharmacotherapeutic intervention to protect against BBB disruption after TBI.
Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Células Endoteliais/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
This study aims to investigate the value of diffusion kurtosis imaging (DKI) in assessing microstructural changes associated with cognitive impairment in chronic traumatic brain injury (TBI). At 7â¯months, six TBI rats and six control rats underwent Morris water maze (MWM) tests, followed by DKI examinations. DKI parameters were measured in bilateral cortex, hippocampus, and callosum. Brain immunohistochemistry (IHC) analysis of neuron [neuron-specific nuclear protein (NeuN)], astroglia [glial fibrillary acidic protein (GFAP)], microglia [ionized calcium binding adaptor molecule 1 (Iba-1)], and myelin [myelin basic protein (MBP)] was performed in the same area as DKI parameter. The DKI parameters, IHC results, and MWM results were compared between TBI and control groups. Correlation analysis was performed to analyze the relationship between DKI parameters and IHC and MWM results. TBI group had worse performance in MWM test. DKI showed higher mean diffusion (MD) in all ipsilateral regions of interest (ROIs), and lower mean kurtosis (MK) in ipsilateral cortex and callosum in TBI group (Pâ¯<â¯0.05). TBI group also showed lower IHC staining of NeuN, and higher staining of Iba-1 and MBP in all ipsilateral ROIs (Pâ¯<â¯0.05). Further correlational study showed a positive relationship between MK and NeuN, MD and MBP in ipsilateral cortex, and a negative relationship between MK and Iba-1, MBP in ipsilateral cortex and hippocampus (Pâ¯<â¯0.05). The MK in ipsilateral cortex and hippocampus were also correlated with MWM test results (Pâ¯<â¯0.05). Our study suggests that DKI could be used to assess the microstructural changes associated with cognitive impairment in chronic TBI.
Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Doença Crônica , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Masculino , Aprendizagem em Labirinto , Microglia/patologia , Neurônios/patologia , Ratos Sprague-DawleyRESUMO
Adjudin, a small molecular compound that is used as a male contraceptive, has been reported to play a neuroprotective role in an ischemic stroke injury model. However, its effect on traumatic brain injury (TBI) has not been assessed. Hence, we investigated the effects of adjudin on cerebral edema using a mouse model of TBI and explored the underlying mechanisms. Adult male C57BL/6 mice received controlled cortical impact (CCI) injury, then an injection of adjudin (50 mg/kg). The mice were euthanized 3 days post-CCI injury, and samples were collected for further analysis. Cultured primary mouse astrocytes were used for in vitro experiments. Adjudin treatment significantly attenuated cerebral edema on Day 3 and improved neurobehavioral outcomes on Days 3, 7, and 14 after CCI injury, compared with the vehicle group. Additionally, the evaluation of Evans blue extravasation and expression of tight junction proteins demonstrated remarkable effects of adjudin on blood-brain barrier protection. Further, adjudin treatment significantly decreased the gene and protein expression of aquaporin 4 in post-injury mice and inhibited progression of neuroinflammation in both mice and cultured astrocytes. The Western blot results of the peritraumatic protein samples demonstrated that adjudin significantly blocked the phosphorylation of IKKα, IκBα/ß, and NF-κB p65, which resulted in a reduction of NF-κB p65 nuclear translocation. In conclusion, adjudin attenuated the development of TBI-induced cerebral edema at least partly via anti-inflammatory effects and inhibition of the NF-κB pathway. These findings suggest that adjudin is a potential therapeutic intervention preventing the development of cerebral edema after TBI.
Assuntos
Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/complicações , Hidrazinas/farmacologia , Indazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Sesamin, a major lignan of sesame oil, was reported to have neuroprotective effects in several brain injury models. However, its protective action in maintaining blood-brain barrier (BBB) integrity has not been studied. In this study we investigated the effects of sesamin on the BBB in a mouse model of traumatic brain injury (TBI) and explored the underlying mechanisms. Adult male C57BL/6 mice were subjected to a controlled cortical impact (CCI) injury and then received sesamin (30 mg·kg-1·d-1, ip). The mice were euthanized on the 1st and 3rd days after CCI injury and samples were collected for analysis. Sesamin treatment significantly attenuated CCI-induced brain edema on the 1st and 3rd days after the injury, evidenced by the decreases in water content, tissue hemoglobin levels, Evans blue extravasation and AQP4 expression levels in the ipsilateral cortical tissue compared with the vehicle-treated group. Furthermore, sesamin treatment significantly alleviated CCI-induced loss of the tight junction proteins ZO-1 and occludin in the brain tissues. The neuroprotective mechanisms of sesamin were further explored in cultured mouse brain microvascular bEnd.3 cells subjected to biaxial stretch injury (SI). Pretreatment with sesamin (50 µmol/L) significantly alleviated SI-induced loss of ZO-1 in bEnd.3 cells. Furthermore, we revealed that pretreatment with sesamin significantly attenuated SI-induced oxidative stress and early-stage apoptosis in bEnd.3 cells by decreasing the activation of ERK, p-38 and caspase-3. In conclusion, sesamin alleviates BBB disruption at least partly through its anti-oxidative and anti-apoptotic effects on endothelial cells in CCI injury. These findings suggest that sesamin may be a promising potential therapeutic intervention for preventing disruption of the BBB after TBI.