RESUMO
High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste. Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen, which has attracted a lot of attention in recent years. To investigate the parameter effects on the efficiency and mass transfer, five combination conditions (53 °C 15 kPa, 60 °C 20 kPa, 65 °C 25 kPa, 72 °C 35 kPa, and 81 °C 50 kPa) were conducted for ammonia stripping of sludge digestate. The results showed that 80% of ammonia nitrogen was stripped in 45 min for all experimental groups, but the ammonia transfer coefficient varied under different conditions, which increased with the rising of boiling point temperature, and reached the maximum value (39.0 mm/hr) at 81 °C 50 kPa. The ammonia nitrogen removal efficiency was more than 80% for 30 min vacuum stripping after adjusting the initial pH to above 9.5, and adjustment of the initial alkalinity also affects the pH value of liquid digestate. It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency, while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity. In terms of the mechanism of vacuum ammonia stripping, it underwent alkalinity destruction, pH enhancement, ammonia nitrogen dissociation, and free ammonia removal. In this study, two-stage experiments of alkalinity destruction and ammonia removal were also carried out, which showed that the two-stage configuration was beneficial for ammonia removal. It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.
Assuntos
Amônia , Temperatura , Eliminação de Resíduos Líquidos , Amônia/química , Concentração de Íons de Hidrogênio , Vácuo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio , Esgotos/química , PressãoRESUMO
This study uncovered the response of novel micro-granule wastewater treatment technology to different powder carrier materials. Characteristics and distinctions among different systems were assessed based on process performance, sludge aggregation capacity, and microbial metabolism. Zeolite carrier system exhibited remarkable nitrogen removal efficiency of 89.6 ± 0.9 %, while diatomite carriers, in conjunction with intermittent aeration, enhanced simultaneous nitrification and denitrification from 2.6 % to 27.1 %. Iron-based carriers demonstrated efficient phosphorus removal (94.7 ± 1.2 %) through both chemical and microbial pathways. Specific surface area, pore structure and biocompatibility of powder carriers determined the formation and size of micro-granules. Tryptophan-like substances, C-(C/H), and Npr in extracellular polymeric substances strongly correlated with sludge hydrophobicity and granulation. Significant enrichment in norank_Comamonadaceae and Nitrosomonas in zeolite powder carrier system promoted partial nitrification and endogenous denitrification. Differences in metabolic pathways elucidated the up-regulation of amino acid synthesis, energy metabolism, and membrane transport as potential mechanisms driving micro-granule formation and efficient treatment performance.
Assuntos
Pós , Esgotos , Águas Residuárias , Purificação da Água , Zeolitas , Esgotos/microbiologia , Zeolitas/química , Purificação da Água/métodos , Águas Residuárias/química , Nitrogênio , Terra de Diatomáceas/química , Fósforo , Nitrificação , Desnitrificação , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismoRESUMO
Platinum-based chemotherapies, historically the cornerstone of first-line treatment for small-cell lung cancer (SCLC), face a major hurdle: the frequent emergence of chemoresistance, notably to cisplatin (CDDP). Current understanding of the mechanisms driving CDDP resistance in SCLC is incomplete. Notably, Interferon inducible transmembrane protein1 (IFITM1) has been identified as a key player in the distant metastasis of SCLC. Analysis of The Cancer Genome Atlas (TCGA) database revealed that IFITM1 expression is markedly elevated in tumor tissues as compared to that from adjacent normal tissues, correlating with a worse prognosis for patients with SCLC. Our research focused on investigating the role of IFITM1 in the acquisition of cisplatin resistance in SCLC. Further clinical sample analysis highlighted a significant increase in IFITM1 levels in SCLC tissues from cisplatin-resistant patients versus those were responsive to CCDP treatment, with similar trends observed in cisplatin-resistant SCLC cells. Crucially, overexpression of IFITM1 reduced the sensitivity of SCLC cells to cisplatin, while silencing IFITM1 enhanced chemosensitivity in cisplatin-resistant strains. Our in vivo studies further confirmed that silencing IFITM1 significantly boosted the efficacy of cisplatin in inhibiting growth of subcutaneous tumors of NCI-H466/CDDP cells (cisplatin-resistant SCLC cells) in a mouse model. Mechanistically, IFITM1 appears to foster cisplatin resistance through activation of the Wnt/ß-catenin pathway. In summary, our findings suggest that targeting IFITM1, alongside cisplatin treatment, could offer a promising therapeutic strategy to overcome resistance and improve outcomes for SCLC patients.
RESUMO
Inappropriate sterilization strategies inhibit microalgal growth when culturing microalgae with anaerobic digestate. This study aimed to scientifically select a low-cost disinfection pretreatment of anaerobic digestate for large-scale microalgae cultivations. In this work, three different methods, including autoclaving, ultraviolet or NaClO treatments, were employed to sterilize the municipal anaerobic digestate. Scenedesmus quadricauda was then cultured in diluted liquid digestate for the simultaneous lipid production and nutrient removal. The results indicated that the growth of S. quadricauda was inhibited after NaClO treatment due to the residual free chlorine. The 15-min ultraviolet effectively mitigated microbial contamination and increasing nutrient availability, enhancing the electron transport of microalgal photosynthesis. After 6-days cultivation, the microalgal biomass concentration of the ultraviolet group was 1.09 g/L, comparable to that of the autoclaving group (1.15 g/L). High nutrient removal efficiency was observed: COD (93.30 %), NH4+-N (92.56 %), TN (85.82 %) and TP (95.12 %). Moreover, S. quadricauda outcompeted the indigenous microorganisms, contributing to its dominance in the culture system of ultraviolet group. The facultative anaerobe Comamonadaceae and aerobes Moraxellaceae, rather than strict anaerobe Paludibacteraceae and Bacteroidetes_vadinHA17, played vital roles in synergistic removal of contaminants by bacteria and algae. The potential competition for nitrogen and phosphorus by bacteria contributed to the ultraviolet group having the greatest lipid content (48.19 %). Therefore, this work suggested using 15-min ultraviolet treatment for anaerobic digestate in large-scale microalgae cultivation.
Assuntos
Microalgas , Scenedesmus , Raios Ultravioleta , Anaerobiose , Bactérias , Biomassa , Nitrogênio , Bacteroidetes , LipídeosRESUMO
The development of efficient and low-consumption wastewater upgrading process is currently at the forefront of the wastewater treatment field. In this study, a novel wastewater treatment process based on powder carriers was proposed. Three systems, namely the activated sludge (AS) system, powder carrier (PC) system, and moving bed biofilm reactor (MBBR) system, were established and operated for over 140 days to treat real municipal wastewater. The characteristics and differences between the three systems were comprehensively investigated. The results suggested that the PC system exhibited notable advantages in nitrogen and phosphorus removal, especially under high influent load and low aeration conditions. The PC system, characterized by a higher nitrification rate compared to the MBBR system and a higher denitrification rate compared to the AS system, contributed to the stable nitrogen removal performance. The particle size of the zoogloea increased under the linkage of the powder carriers, and the mean size of micro-granules reached 170.88 µm. Large number of hydrophobic functional groups on sludge surface, coupled with increased protein content in EPS, further promoted sludge aggregation. Micro-granules formation improved settling performance and enhanced the abundance and activity of functional microbes. A significant enrichment in denitrifying bacteria and denitrifying phosphorus accumulating bacteria was observed in PC system. Up-regulation of the napA, narG, and nosZ genes was responsible for efficient nitrogen removal of the PC system. Moreover, a higher abundance in polyphosphate phosphotransferase (2.11 %) was found in PC system compared with AS and MBBR systems. The increase in the enzymes associated with poly-ß-hydroxybutyrate (PHB) synthesis metabolism in PC system provided the energy for denitrification and phosphorus removal processes.
Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Pós , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/análise , Fósforo/metabolismo , Biofilmes , Desnitrificação , Reatores Biológicos/microbiologia , NitrificaçãoRESUMO
Granular sludge has been recognized as an effective method for the application and industrialization of the anammox-based process due to its good biomass retention capacity and environmental tolerance. In this study, a one-stage autotrophic nitrogen removal (ANR) dual-partition system with airlift internal circulation was implemented for 320 days. A high nitrogen removal efficiency of 84.6% was obtained, while the nitrogen removal rate reached 1.28 g-N/L/d. ANR granular sludge dominated by Nitrosomonas and Candidatus Brocadia was successfully cultivated. Results showed that activity and abundance of functional flora first increased with granulation process, but eventually declined slightly when particle size exceeded the optimal range. Total anammox activity was observed to be significantly correlated with protein content (R2 = 0.9623) and nitrogen removal performance (R2 = 0.8796). Correlation network revealed that AnAOB had complex interactions with other bacteria, both synergy for nitrogen removal and competition for substrate. Changes in abundances of genes encoding the Carbohydrate Metabolism, Energy Metabolism, and Membrane Transport suggested energy production and material transfer were possibly blocked with further sludge granulation. Formation of ANR granular sludge promoted the interactions and metabolism of functional microorganisms, and the complex nitrogen metabolic pathways improved the performance stability. These results validated the feasibility of granule formation in the airlift dual-partition system and revealed the response of the ANR system to sludge granulation.
Assuntos
Nitrogênio , Esgotos , Oxirredução , Nitrogênio/análise , Desnitrificação , Reatores Biológicos/microbiologiaRESUMO
BACKGROUND: Lung ischemia-reperfusion (I/R) injury is a serious clinical problem without effective treatment. Enhancing branched-chain amino acids (BCAA) metabolism can protect against cardiac I/R injury, which may be related to bioactive molecules generated by BCAA metabolites. L-ß-aminoisobutyric acid (L-BAIBA), a metabolite of BCAA, has multi-organ protective effects, but whether it protects against lung I/R injury is unclear. METHODS: To assess the protective effect of L-BAIBA against lung I/R injury, an animal model was generated by clamping the hilum of the left lung, followed by releasing the clamp in C57BL/6 mice. Mice with lung I/R injury were pre-treated or post-treated with L-BAIBA (150 mg/kg/day), given by gavage or intraperitoneal injection. Lung injury was assessed by measuring lung edema and analyzing blood gases. Inflammation was assessed by measuring proinflammatory cytokines in bronchoalveolar lavage fluid (BALF), and neutrophil infiltration of the lung was measured by myeloperoxidase activity. Molecular biological methods, including western blot and immunofluorescence, were used to detect potential signaling mechanisms in A549 and BEAS-2B cells. RESULTS: We found that L-BAIBA can protect the lung from I/R injury by inhibiting ferroptosis, which depends on the up-regulation of the expressions of GPX4 and SLC7A11 in C57BL/6 mice. Additionally, we demonstrated that the Nrf-2 signaling pathway is key to the inhibitory effect of L-BAIBA on ferroptosis in A549 and BEAS-2B cells. L-BAIBA can induce the nuclear translocation of Nrf-2. Interfering with the expression of Nrf-2 eliminated the protective effect of L-BAIBA on ferroptosis. A screening of potential signaling pathways revealed that L-BAIBA can increase the phosphorylation of AMPK, and compound C can block the Nrf-2 nuclear translocation induced by L-BAIBA. The presence of compound C also blocked the protective effects of L-BAIBA on lung I/R injury in C57BL/6 mice. CONCLUSIONS: Our study showed that L-BAIBA protects against lung I/R injury via the AMPK/Nrf-2 signaling pathway, which could be a therapeutic target.
L-BAIBA upregulates the expression of GPX4 and SLC7A11 by activating the AMPK/Nrf-2/GPX4/SLC7A11 signaling pathway, thereby protecting against I/R-induced increase in ROS and ferroptosis in the lung.
Assuntos
Ferroptose , Traumatismo por Reperfusão , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismoRESUMO
The sustainable application of thermal sludge drying process is limited by the high energy consumption due to the phase-change latent heat of moisture. This study proposed that the ultrahigh pressure filtration could realize the non-phase-change sludge drying. The lowest water content of 28.12 wt.% was realized by the filtration pressure of 21 MPa for the excess sludge with polyaluminium chloride as the conditioning agent. With the stepwise increase of filtration pressure employed (5-21 MPa), the diameter of solid pores was gradually narrowed to the same order of magnitude with the thickness of vicinal water film (i.e., 1-10 nm). As a result, the capillary water was transformed into the vicinal water, and the solid-water interface interaction played more crucial roles in water occurrence states. However, Hagen-Poiseuille equation was introduced to estimate the pore water outflow based on the pore wall hydrophilicity and the external filtration pressure, which implied that there can be always a sufficiently large driving force to maintain the water outflow rate no matter how the pore diameter is small and the sidewall is hydrophilic. Typically, the fitting results of excess sludge (R2=0.985, p-value<0.01) indicated that the pressure gradient of 2.11 × 109 Pa/m was required to maintain the pore water flow rate of 1.38 × 10-15 m3/s with the median pore diameter of 5.33 × 10-7 m. All these findings broke through the conventional cognition that only thermal drying process can decrease the sludge water content below 60 wt.%, and facilitated energy saving of sludge dewatering process through non-phase-change separation, i.e., ultrahigh pressure filtration.
Assuntos
Filtração , Esgotos , Esgotos/química , Filtração/métodos , Água/química , Dessecação , Interações Hidrofóbicas e Hidrofílicas , Eliminação de Resíduos Líquidos/métodosRESUMO
This study posed a novel biomimetic flocculation approach, aiming to efficiently harvest high-quality biomass of Scenedesmus quadricauda cultured with anaerobic digestate. Here, that poly(diallyldimethylammonium chloride) (PDADMAC) could serve as mimetic silicified proteins to spontaneously incorporate nanosilica onto microalgal cells, imparting diatom-like characteristics to S. quadricauda. Compared to the exponential growth phase (day 3), the highest harvesting efficiency (93.49%) was obtained at a lower dosage of PDADMAC (5 mg/g) in the stationary phase (day 6), which was attributed to changes in properties and composition of microalgal LB-EPS. On day 6, the hydrophobic functional groups in LB-EPS provided more binding sites during the flocculation process and formed a network structure of microalgal cells-flocculants-nanosilica. The resulting larger and more stable biomimetic silica shell promoted microalgal flocculation and sedimentation. Compared to conventional harvesting methods (centrifugation, polyacrylamide, alkaline flocculation), this method had the minimal negative impact on harvested biomass, with 9.95% of cell membranes damaged.
Assuntos
Microalgas , Biomassa , FloculaçãoRESUMO
Myocardial dysfunction is the most serious complication of sepsis. Sepsis-induced myocardial dysfunction (SMD) is often associated with gastrointestinal dysfunction, but its pathophysiological significance remains unclear. The present study found that patients with SMD had higher plasma gastrin concentrations than those without SMD. In mice, knockdown of the gastrin receptor, cholecystokinin B receptor (Cckbr), aggravated lipopolysaccharide (LPS)-induced cardiac dysfunction and increased inflammation in the heart, whereas the intravenous administration of gastrin ameliorated SMD and cardiac injury. Macrophage infiltration plays a significant role in SMD because depletion of macrophages by the intravenous injection of clodronate liposomes, 48 h prior to LPS administration, alleviated LPS-induced cardiac injury in Cckbr-deficient mice. The intravenous injection of bone marrow macrophages (BMMs) overexpressing Cckbr reduced LPS-induced myocardial dysfunction. Furthermore, gastrin treatment inhibited toll-like receptor 4 (TLR4) expression through the peroxisome proliferator-activated receptor α (PPAR-α) signaling pathway in BMMs. Thus, our findings provide insights into the mechanism of the protective role of gastrin/CCKBR in SMD, which could be used to develop new treatment modalities for SMD.
RESUMO
This study provides a comparative investigation of phosphorus removal between anaerobic-anoxic-oxic (AAO) and high-concentration powder carrier bio-fluidized bed (HPB) in the same full-scale wastewater treatment plant. The results showed that the total phosphorus removal of HPB was 71.45%-96.71%. Compared with AAO, the total phosphorus removal of HPB can be increased by a maximum of 15.73%. The mechanisms of enhanced phosphorus removal by HPB include the followings. Biological phosphorus removal was significant. The anaerobic phosphorus release capacity of HPB was enhanced and polyphosphate (Poly-P) in the excess sludge of HPB was 1.5 times higher than that of AAO. The relative abundance of Candidatus Accumulibacter was 5 times higher than that of AAO, and oxidative phosphorylation and butanoate metabolism were enhanced. The analysis of phosphorus distribution showed that cyclone separation increased the chemical phosphorus precipitation (Chem-P) in the excess sludge by 16.96% to avoid accumulation in the biochemical tank. The phosphorus adsorbed by extracellular polymeric substance (EPS) in the recycled sludge was stripped, and the EPS bound-P in the excess sludge increased by 1.5 times. This study demonstrated the feasibility of HPB to improve the phosphorus removal efficiency for domestic wastewater.
Assuntos
Tempestades Ciclônicas , Esgotos , Esgotos/química , Pós , Fósforo/análise , Metagenômica , Matriz Extracelular de Substâncias Poliméricas/química , Desnitrificação , Reatores Biológicos , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodosRESUMO
In practice, the influent organic matter is often pre-treated to reduce the impact on partial nitritation-anammox (PNA) process. However, the influent organics may also drive the denitrification process and improve total nitrogen removal efficiency of the PNA process. Thus, we designed and operated a novel dissolved oxygen-differentiated airlift internal circulation PNA (PNA-DOAIC) system in this study at various influent C/N ratios of 0-4.0. Nitrogen removal performance, microbial activity and community, and metabolic pathways in response to varying organic matter stress were investigated via the continuous experiment combined with batch test. The results showed that the optimum influent C/N ratio was 2.0 in this system, and the efficient and stable operation was still maintained at the C/N ratios of 0-3. At this time, the TN removal efficiency and removal rate could reach 95.1 % and 0.93 kg-N/m3/d, respectively, while COD efficiency remained at 95.4 %. Efficient removal performance was achieved via the PNA coupled with denitrification. However, the anammox bacteria (AnAOB) activity and abundance declined persistently as the influent C/N ratio was further raised, and heterotrophic bacteria gradually replaced AnAOB as dominate genus. Meanwhile, metabolic functions involving the material exchange and organic degradation were significantly enhanced. Nitrogen removal pathways changed from PNA to the nitrification-denitrification process. This study provides deep insights into effects of organic matter on the PNA process and can expand the application scope of this novel PNA-DOAIC bioreactor.
Assuntos
Oxidação Anaeróbia da Amônia , Desnitrificação , Oxirredução , Nitrificação , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Redes e Vias Metabólicas , Esgotos/microbiologiaRESUMO
Coupling municipal anaerobic digestate (MAD) treatments with microalgal cultivation can concomitantly achieve nutrient removal and microalgal bioenergy production. However, the high cost caused by dilution water and microalgal harvesting is a great challenge. In this study, Scenedesmus quadricauda was screened as the most appropriate algae strain due to its potential for growth and auto-flocculation, and the MAD diluted 5-fold with WWTP effluent was demonstrated as an ideal medium for S. quadricauda growth. Moreover, inspired by naturally generated silica shells of diatoms, a low-cost and biomimetic auto-flocculation strategy that combined high light intensity induction and microalgal silicification was proposed to accelerate the auto-flocculation process. Compared with low light intensity groups, this strategy imparted diatom-like features to S. quadricauda cells, and contributed to 3.07-fold higher auto-flocculation efficiency within 30 min. It was attributed to the fact that the high light intensity of 150 µmol·m - 2·s - 1 stimulated the extracellular polymeric substances (EPS) secretion and induced the variation in property and composition of EPS, especially the protein secondary structures, which allowed silica nanoparticles to spontaneously attach onto S. quadricauda cells in the presence of viscous EPS. Furthermore, this strategy significantly increased microalgal biomass yield to a dry weight of 1.37 g·L - 1, accompanied by 93.78%, 96.39% and 91.36% removals of NH4+-N, TP, and COD, respectively. The productivity of valuable by-products, including lipid, carbohydrate, protein, and pigment, reached 56.30, 101.35, 30.39 and 11.28 mg·L - 1·d - 1, respectively. Overall, this study supplies a novel approach for low-cost microalgal bioenergy production from MAD and energy-efficient microalgae harvest by auto-flocculation.
Assuntos
Microalgas , Scenedesmus , Floculação , Anaerobiose , Microalgas/metabolismo , BiomassaRESUMO
Ischemia/reperfusion injury of the kidney is associated with high morbidity and mortality, and treatment of this injury remains a challenge. G protein-coupled receptor kinase 4 (GRK4) plays a vital role in essential hypertension and myocardial infarction, but its function in kidney ischemia/reperfusion injury remains undetermined. Among the GRK subtypes (GRK2-6) expressed in kidneys, the increase in GRK4 expression was much more apparent than that of the other four GRKs 24 hours after injury and was found to accumulate in the nuclei of injured mouse and human renal tubule cells. Gain- and loss-of-function experiments revealed that GRK4 overexpression exacerbated acute kidney ischemia/reperfusion injury, whereas kidney tubule-specific knockout of GRK4 decreased injury-induced kidney dysfunction. Necroptosis was the major type of tubule cell death mediated by GRK4, because GRK4 significantly increased receptor interacting kinase (RIPK)1 expression and phosphorylation, subsequently leading to RIPK3 and mixed lineage kinase domain-like protein (MLKL) phosphorylation after kidney ischemia/reperfusion injury, but was reversed by necrostatin-1 pretreatment (an RIPK1 inhibitor). Using co-immunoprecipitation, mass spectrometry, and siRNA screening studies, we identified signal transducer and activator of transcription (STAT)1 as a GRK4 binding protein, which co-localized with GRK4 in the nuclei of renal tubule cells. Additionally, GRK4 phosphorylated STAT1 at serine 727, whose inactive mutation effectively reversed GRK4-mediated RIPK1 activation and tubule cell death. Kidney-targeted GRK4 silencing with nanoparticle delivery considerably ameliorated kidney ischemia/reperfusion injury. Thus, our findings reveal that GRK4 triggers necroptosis and aggravates kidney ischemia/reperfusion injury, and its downregulation may provide a promising therapeutic strategy for kidney protection.
Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/complicações , Morte Celular , Regulação para Baixo , Rim/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Acoplados a Proteínas G/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controleRESUMO
Light detection and ranging (LiDAR) using various operational principles has been applied in many fields, e.g., robotics navigation, autonomous vehicles, unmanned aerial flyers, land surveying, etc. The multichannel LiDAR system is of great importance in the field of autonomous driving due to its larger field of view (FoV). However, the number of transceivers limits the vertical angular resolution of multichannel LiDAR systems and makes them costly. On the other hand, the emergence of microelectromechanical systems (MEMS) mirrors may provide a highly promising solution to a low-cost, high angular resolution LiDAR system. We have demonstrated a MEMS mirror-based 360° LiDAR system with high angular resolution and will present the detailed design process and obtained experimental results in this paper. With the combination of the MEMS mirror and a rotation platform for the LiDAR system, a 360° × 8.6° (horizontal × vertical) FoV was achieved. Compared with existing commercial multichannel 360° LiDAR systems, our system has 13.8 times better angular resolution than the Velodyne HDL-64 LiDAR sensor. The experimental results verified an excellent performance of 0.07° × 0.027° (horizontal × vertical) angular resolution, which enhances the panoramic scanning and imaging capability of the LiDAR system, potentially providing more accurate 3D scanning applications in areas such as autonomous vehicles, indoor surveying, indoor robotics navigation, etc.
RESUMO
A large amount of household food waste (HFW) is produced yearly, resulting in environmental problems and financial burdens. Bio-production of lactic acid (LA), a high value-added platform chemical, from HFW by anaerobic fermentation is a promising way of resource recovery. However, the LA production yield from HFW is low. This paper compared several pretreatment methods (hydrothermal pretreatment, chemical pretreatment, and combined hydrothermal and chemical pretreatment) to improve LA production from HFW. The result showed that the combined pretreatment (alkali-thermal pretreatment at pH 10 and 120 °C) significantly increased the LA production than single hydrothermal and chemical pretreatment. The pretreatment process promoted the dissolution of organics, especially the polysaccharides and amino acids, and further influenced the LA production by Lactobacillus rhamnosus ATCC 7469. Among the amino acids, aspartic acid (Asp), threonine (Thr), glutamic acid (Glu), glycine (Gly), alanine (Ala), cystine (Cys), valine (Val), isoleucine (Ile), arginine (Arg), and proline (Pro) significantly correlated with LA concentration.
Assuntos
Aminoácidos , Eliminação de Resíduos , Sequência de Aminoácidos , Alimentos , Solubilidade , Tripsina , PolissacarídeosRESUMO
Sewage sludge is the byproduct of wastewater treatment plants, which host enormous diversity of microbes including potential pathogens. However, there are still challenges in assessing hygienization during sludge stabilization due to the complex relationships between dominant microbes and human pathogenic bacteria (HPB), and the accuracy of fecal indicator bacteria (FIB) is also disputed. Here, the responses of the bacterial community, HPB, and FIB to sludge pretreatment-anaerobic digestion (AD) were comprehensively compared using culture-based and 16S rRNA gene molecular analysis methodologies. Bacterial and HPB communities differed in response to sludge pretreatment-AD. AD drove the variation of bacterial community, but led to the convergence of HPB communities in pretreated sludge, indicating the existence of ecological niches that favors HPB dissemination in digesters. The correlation analysis indicated that FIB was suitable for characterizing general pathogen removal instead of showing the real pattern of HPB (i.e., each HPB), implying the need for comprehensive assessment approaches. Moreover, AD-related parameters including pH, total solids destruction, and methane yield were found to play important role in assessing pathogen inactivation given their correlation. This work provides theoretical basis for the selection of appropriate sludge stabilization approaches and future supervision of biosolids biosafety, which finally benefits human health.
Assuntos
Bactérias , Esgotos , Humanos , Esgotos/química , Anaerobiose , RNA Ribossômico 16S/genética , Bactérias/genética , Metano , Reatores Biológicos/microbiologiaRESUMO
Nitrogen-containing wastewater and organic wastes are inevitably produced during human activities. To reduce nitrogen pollution, much energy has been used to convert ammonia nitrogen into nitrogen gas through biological nitrogen removal method. However, it needs to consume high energy again during industrial nitrogen fixation, which give rise to massive greenhouse gas (GHG) emissions. Therefore, ammonia recovery from organic wastes has attracted much attention in recent years. In this review, the advantages and disadvantages of ammonia stripping, membrane separation and struvite precipitation are discussed firstly. The ammonia stripping mechanisms, influencing factors, mass transfer process, and the latest innovative ammonia stripping techniques from the anaerobic digestate of organic wastes are critically reviewed. Additionally, a comprehensive economic analysis of different ammonia removal or recovery processes is carried out. The challenges and prospects of ammonia recovery are suggested. Ammonia recovery is of great significance for promoting nitrogen cycle, energy saving and GHG emission reduction.
Assuntos
Amônia , Gases de Efeito Estufa , Anaerobiose , Humanos , Nitrogênio/análise , Estruvita , Águas ResiduáriasRESUMO
The effects of hydrothermal treatment (HTT) under different temperatures and time (120 °C to 250 °C, 10 min to 60 min) on organic matter solubilization and structure changes of secondary sludge (SS) and digested sludge (DS), as well as downstream dewatering and anaerobic digestion were investigated. The results showed that organic matter solubilization increased significantly at 120 °C to 170 °C, then decreased at 200 °C to 250 °C. The organic matter solubilization during HTT showed no obvious difference for two sludge, but for the different organic components. The polysaccharides are easier to be dissolved than protein, which was manifested by the higher dissolution rate at low temperature. The protein was the main soluble component for both of hydrothermal SS and DS, which accounted for 44 % to 64 % of soluble chemical oxygen demand (SCOD). The decrease of residual extracellular polymeric substances (EPS) content and increase of N-acetylglucosamine and DNA concentrations indicated that sludge EPS and cell wall structure were damaged at 170 °C, which contributed to the high organic matter solubilization. Nitrogen balance and molecular weight distribution indicated the concentrations of soluble organic components were the combined result of dissolution and hydrolysis reaction. The hydrolysis and polymerization reaction were intensified at 170 °C to 250 °C, which was verified by the COD balance and molecular weight transformation. The hydrothermal time could further facilitate the organics dissolution and hydrolysis based on the effect of hydrothermal temperature. The EPS structure damage also contributed to the high percentage of free moisture, resulting in enhanced dewaterability. The highest methane production was 298.1 mL CH4/g VSadd for DS hydrothermally treated at 170 °C, which were 125 % and 9.8 % higher than SS and SS-HTT, respectively. This study provided an insight into the general mechanism of HTT and the application of different HTT and AD configurations.
Assuntos
Biocombustíveis , Esgotos , Acetilglucosamina , Anaerobiose , Metano , Nitrogênio , Esgotos/química , Eliminação de Resíduos Líquidos/métodosRESUMO
China is vigorously promoting garbage classification, but the treatment of classified waste, especially household food waste (HFW) has yet to be studied. Lactic acid (LA), a high value-added platform molecule has broad market prospects. Although there have been many studies on the production of LA from food waste, open fermentation often produces lots of by-products, while the traditional fermentation under a pure bacteria system often requires the saccharification process, which increases the production cost. We sought to analyze the comprehensive properties of classified HFW in Shanghai, then to produce LA by inoculating lactic acid bacteria (LAB) directly. The effects of strains, temperature, sterilized or not, initial pH, inoculum size, and substrate concentration on LA production were investigated. HFW was rich in nutrients and growth factors which provided the possibility for direct LA production from HFW by inoculating LAB. The results showed that Lactobacillus rhamnosus ATCC 7469, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus all could be used as the inoculum, however, no significant synergistic effect of the three strains on LA production was found. LA concentration of 30.25 g/L at 37 °C, pH 6.8 could be obtained by inoculating Lactobacillus rhamnosus ATCC 7469 from sterilized HFW. High inoculum size and substrate concentration resulted in high LA concentration, but not high LA yield. The result of ANOVA indicated that there was a significantly positive relationship between substrate concentration and LA concentration (r = 0.942, p < 0.01), while no statistically significant difference between these groups at different inoculum size was evident (p = 0.318). In addition, an average LA concentration of 26.8 g/L, LA yield of 0.20 g/g TCOD was obtained by repeated batch fermentation for 32 d.