Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
FASEB J ; 38(16): e70003, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39157946

RESUMO

The mechanism connecting gut microbiota to appetite regulation is not yet fully understood. This study identifies specific microbial community and metabolites that may influence appetite regulation. In the initial phase of the study, mice were administered a broad-spectrum antibiotic cocktail (ABX) for 10 days. The treatment significantly reduced gut microbes and disrupted the metabolism of arginine and tryptophan. Consequently, ABX-treated mice demonstrated a notable reduction in feed consumption. The hypothalamic expression levels of CART and POMC, two key anorexigenic factors, were significantly increased, while orexigenic factors, such as NPY and AGRP, were decreased. Notably, the levels of appetite-suppressing hormone cholecystokinin in the blood were significantly elevated. In the second phase, control mice were maintained, while the ABX-treated mice received saline, probiotics, and short-chain fatty acids (SCFAs) for an additional 10 days to restore their gut microbiota. The microbiota reconstructed by probiotic and SCFA treatments were quite similar, while microbiota of the naturally recovering mice demonstrated greater resemblance to that of the control mice. Notably, the abundance of Akkermansia and Bacteroides genera significantly increased in the reconstructed microbiota. Moreover, microbiota reconstruction corrected the disrupted arginine and tryptophan metabolism and the abnormal peripheral hormone levels caused by ABX treatment. Among the groups, SCFA-treated mice had the highest feed intake and NPY expression. Our findings indicate that gut microbes, especially Akkermansia, regulate arginine and tryptophan metabolism, thereby influencing appetite through the microbe-gut-brain axis.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia , Triptofano/metabolismo , Apetite/efeitos dos fármacos , Probióticos/farmacologia , Arginina/farmacologia , Arginina/metabolismo , Hipotálamo/metabolismo , Regulação do Apetite/fisiologia , Ácidos Graxos Voláteis/metabolismo
2.
Future Med Chem ; 16(13): 1287-1298, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39109433

RESUMO

Aim: Lysosomal pH changes are associated with drug resistance, cell growth and invasion of tumors, but effective and specific real-time monitoring of lysosomal pH compounds for cancer therapy is lacking. Materials & methods: Here, based on the covalent linkage of the anticancer drug palbociclib and fluorescent dye fluorescein isothiocyanate (FITC), we designed and developed a novel palbociclib-derived multifunctional molecule (Pal-FITC) for lysosomal targeting and diagnostic therapeutic integration. Results & discussion: Pal-FITC fluoresces is 20-fold stronger than that of FITC and shows a linear response in the pH range of 4.0-8.2 (R2 = 0.9901). Pal-FITC blocks cells in G1 phase via Cyclin D-CDK4/6-Rb. Conclusion: Our study provides new strategies for tumor-targeted imaging and personalized therapy.


Based on the covalent linkage of the anticancer drug and the fluorescent dye, we designed and developed a novel palbociclib-derived multifunctional molecule (Pal-FITC) for lysosomal targeting and diagnostic therapeutic integration. Pal-FITC responded linearly in the pH range of 4.0­8.2. In addition, Pal-FITC was able to effectively treat lung cancer without toxic side effects on normal cells. It has a significant cell cycle blocking phenomenon and blocks G1 phase cells via Cyclin D-CDK4/6-Rb. Our study provides a new strategy for tumor-targeted imaging and personalized therapy.


Assuntos
Antineoplásicos , Lisossomos , Piperazinas , Piridinas , Humanos , Piridinas/química , Piridinas/farmacologia , Lisossomos/metabolismo , Piperazinas/química , Piperazinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/síntese química , Fluoresceína-5-Isotiocianato/química , Proliferação de Células/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Estrutura Molecular
3.
Front Endocrinol (Lausanne) ; 15: 1397670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868746

RESUMO

Objective: To investigate the causal effect of immune cells on endometriosis (EMS), we performed a Mendelian randomization analysis. Methods: Mendelian randomization (MR) uses genetic variants as instrumental variables to investigate the causal effects of exposures on outcomes in observational data. In this study, we conducted a thorough two-sample MR analysis to investigate the causal relationship between 731 immune cells and endometriosis. We used complementary Mendelian randomization (MR) methods, including weighted median estimator (WME) and inverse variance weighted (IVW), and performed sensitivity analyses to assess the robustness of our results. Results: Four immune phenotypes have been found to be significantly associated with the risk of developing EMS: B cell %lymphocyte (WME: OR: 1.074, p = 0.027 and IVW: OR: 1.058, p = 0.008), CD14 on Mo MDSC (WME: OR: 1.056, p =0.021 and IVW: OR: 1.047, p = 0.021), CD14+ CD16- monocyte %monocyte (WME: OR: 0.947, p = 0.024 and IVW: OR: 0.958, p = 0.011), CD25 on unsw mem (WME: OR: 1.055, p = 0.030 and IVW: OR: 1.048, p = 0.003). Sensitivity analyses confirmed the main findings, demonstrating consistency across analyses. Conclusions: Our MR analysis provides compelling evidence for a direct causal link between immune cells and EMS, thereby advancing our understanding of the disease. It also provides new avenues and opportunities for the development of immunomodulatory therapeutic strategies in the future.


Assuntos
Endometriose , Análise da Randomização Mendeliana , Humanos , Endometriose/genética , Endometriose/imunologia , Feminino , Monócitos/imunologia , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único
4.
Front Endocrinol (Lausanne) ; 15: 1348368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779450

RESUMO

Background: Polycystic Ovary Syndrome (PCOS) is a heritable condition with an as yet unclear etiology. Various factors, such as genetics, lifestyle, environment, inflammation, insulin resistance, hyperandrogenism, iron metabolism, and gut microbiota, have been proposed as potential contributors to PCOS. Nevertheless, a systematic assessment of modifiable risk factors and their causal effects on PCOS is lacking. This study aims to establish a comprehensive profile of modifiable risk factors for PCOS by utilizing a two-sample Mendelian Randomization (MR) framework. Methods: After identifying over 400 modifiable risk factors, we employed a two-sample MR approach, including the Inverse Variance Weighted (IVW) method, Weighted Median method, and MR-Egger, to investigate their causal associations with PCOS. The reliability of our estimates underwent rigorous examination through sensitivity analyses, encompassing Cochran's Q test, MR-Egger intercept analysis, leave-one-out analysis, and funnel plots. Results: We discovered that factors such as smoking per day, smoking initiation, body mass index, basal metabolic rate, waist-to-hip ratio, whole body fat mass, trunk fat mass, overall health rating, docosahexaenoic acid (DHA) (22:6n-3) in blood, monounsaturated fatty acids, other polyunsaturated fatty acids apart from 18:2 in blood, omega-3 fatty acids, ratio of bisallylic groups to double bonds, omega-9 and saturated fatty acids, total lipids in medium VLDL, phospholipids in medium VLDL, phospholipids in very large HDL, triglycerides in very large HDL, the genus Oscillibacter, the genus Alistipes, the genus Ruminiclostridium 9, the class Mollicutes, and the phylum Tenericutes, showed a significant effect on heightening genetic susceptibility of PCOS. In contrast, factors including fasting insulin interaction with body mass index, sex hormone-binding globulin, iron, ferritin, SDF1a, college or university degree, years of schooling, household income, the genus Enterorhabdus, the family Bifidobacteriaceae, the order Bifidobacteriales, the class Actinobacteria, and the phylum Actinobacteria were determined to reduce risk of PCOS. Conclusion: This study innovatively employs the MR method to assess causal relationships between 400 modifiable risk factors and the susceptibility of PCOS risk. It supports causal links between factors like smoking, BMI, and various blood lipid levels and PCOS. These findings offer novel insights into potential strategies for the management and treatment of PCOS.


Assuntos
Análise da Randomização Mendeliana , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/epidemiologia , Humanos , Feminino , Fatores de Risco , Índice de Massa Corporal , Resistência à Insulina
5.
J Food Sci ; 89(6): 3540-3553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720570

RESUMO

Starch and alcohol serve as pivotal indicators in assessing the quality of lees fermentation. In this paper, two hyperspectral imaging (HSI) techniques (visible-near-infrared (Vis-NIR) and NIR) were utilized to acquire separate HSI data, which were then fused and analyzed toforecast the starch and alcohol contents during the fermentation of lees. Five preprocessing methods were first used to preprocess the Vis-NIR, NIR, and the fused Vis-NIR and NIR data, after which partial least squares regression models were established to determine the best preprocessing method. Following, competitive adaptive reweighted sampling, successive projection algorithm, and principal component analysis algorithms were used to extract the characteristic wavelengths to accurately predict the starch and alcohol levels. Finally, support vector machine (SVM)-AdaBoost and XGBoost models were built based on the low-level fusion (LLF) and intermediate-level fusion (ILF) of single Vis-NIR and NIR as well as the fused data. The results showed that the SVM-AdaBoost model built using the LLF data afterpreprocessing by standard normalized variable was most accurate for predicting the starch content, with an R P 2 $\ R_P^2$ of 0.9976 and a root mean square error of prediction (RMSEP) of 0.0992. The XGBoost model built using ILF data was most accurate for predicting the alcohol content, with an R P 2 $R_P^2$ of 0.9969 and an RMSEP of 0.0605. In conclusion, the analysis of fused data from distinct HSI technologies facilitates rapid and precise determination of the starch and alcohol contents in fermented grains.


Assuntos
Fermentação , Imageamento Hiperespectral , Espectroscopia de Luz Próxima ao Infravermelho , Amido , Máquina de Vetores de Suporte , Amido/análise , Imageamento Hiperespectral/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Grão Comestível/química , Alimentos Fermentados/análise , Álcoois/análise , Análise de Componente Principal , Algoritmos , Análise dos Mínimos Quadrados
6.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38712478

RESUMO

A study of the mechanism of and metabolic regulation of brown adipose tissue (BAT) production is important for improving the survival rate of young animals. In the present study, we observed that perirenal adipose tissue in goats undergoes a rapid BAT whitening after birth. However, the underlying regulatory mechanism remains unknown. To address this further, we investigated the role of miRNAs in regulating the whitening process of BAT in goats. First, we identified the dynamic expression profiles of miRNAs during the whitening of BAT in Dazu black goat using RNA-seq. We identified a total of 1374 miRNAs, including 408 existing miRNAs, 693 known miRNAs, and 273 novel miRNAs. By analysis of the differentially expressed miRNAs (DE miRNAs), we found that 102 highly expressed miRNAs, including chi-miR-144-3p, chi-miR-144-5p, chi-miR-378-5p, chi-miR-136-3p, chi-miR-381, chi-miR-323b, chi-miR-1197-3p, chi-miR-411b-3p, and chi-miR-487a-3p, were enriched in BAT. In addition, 60 highly expressed miRNAs, including chi-miR-184, chi-miR-193a, chi-miR-193b-3p, chi-let-7c-5p, and chi-let-7e-5p, were enriched in white fat-like tissue. An analysis of miRNAs that were linearly downregulated (profile 0) or linearly upregulated (profile 19) over the D0-D28 period found that these DE miRNAs were mainly enriched in the Hippo signaling pathway, Cytokine-cytokine receptor interactions, and the TGF-beta signaling pathway. Furthermore, we confirmed that chi-let-7e-5p promotes the proliferation and differentiation of brown adipocytes. These results should facilitate a better understanding of the molecular regulation of miRNAs involved in BAT whitening in goats.


Goat kids born during the cold season are prone to perishing due to harsh temperatures. However, implementing artificial warming and increasing heat production in goat kids can enhance their survival chances. Newborn Goat kids possess significant amounts of brown adipose tissue (BAT) in the perirenal region, and BAT is known to play a vital role in regulating body temperature via non-shivering thermogenesis. A preliminary investigation revealed that the perirenal adipose tissue in goat kids undergoes BAT whitening during the first month of life. However, the mechanism underlying BAT whitening remains unknown. Previous research suggests that miRNAs serve as critical regulators of metabolic homeostasis in adipose tissue. Thus, a comprehensive screening of the expression profile of miRNAs during BAT whitening in Dazu black goats and subsequent identification of miRNAs that regulate BAT thermogenesis should provide a foundation for future research on BAT development and regulation in goats.


Assuntos
Tecido Adiposo Marrom , Cabras , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Cabras/genética , Cabras/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Regulação da Expressão Gênica
7.
J Anim Sci Biotechnol ; 15(1): 47, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481287

RESUMO

BACKGROUND: Brown adipose tissue (BAT) is known to be capable of non-shivering thermogenesis under cold stimulation, which is related to the mortality of animals. In the previous study, we observed that goat BAT is mainly located around the kidney at birth, and changes to white adipose tissue (WAT) in the perirenal adipose tissue of goats within one month after birth. However, the regulatory factors underlying this change is remain unclear. In this study, we systematically studied the perirenal adipose tissue of goat kids in histological, cytological, and accompanying molecular level changes from 0 to 28 d after birth. RESULTS: Our study found a higher mortality rate in winter-born goat kids, with goat birthing data statistics. Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d. This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids. Additionally, we found a series of changes of BAT during the first 28 d after birth, such as whitening, larger lipid droplets, decreased mitochondrial numbers, and down-regulation of key thermogenesis-related genes (UCP1, DIO2, UCP2, CIDEA, PPARGC1a, C/EBPb, and C/EBPa). Then, we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats. Furthermore, 12 candidate genes were found to potentially regulate goat BAT thermogenesis. The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes. While apoptosis may play a limited role, it is largely not critical in this transition process. CONCLUSIONS: We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids, with notable species differences in the expression of adipose tissue marker genes, and we highlighted some potential marker genes for goat BAT and WAT. Additionally, the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.

8.
J Pathol ; 262(4): 467-479, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38185904

RESUMO

Endometrioid adenocarcinoma (EEC) is one of the most common cancers of the female reproductive system. In recent years, much emphasis has been placed on early diagnosis and treatment. PAX2 (Paired box 2) inactivation is reportedly an important biomarker for endometrioid intraepithelial neoplasia (EIN) and EEC. However, the role of PAX2 in EEC carcinogenesis remains unclear. PAX2 expression and associated clinical characteristics were analyzed via The Cancer Genome Atlas, Gene Expression Omnibus, and Cancer Cell Line Encyclopedia databases and clinical paired EIN/EEC tissue samples. Bioinformatic analysis was conducted to identify the putative molecular function and mechanism of PAX2. Cell proliferation, colony formation, cell migration, and invasion assays in vitro, and mouse xenograft models were utilized to study the biological functions of PAX2 in vivo. Pyrosequencing and the demethylating drug 5-Aza-dc were used to verify promoter methylation in clinical tissues and cell lines, respectively. The mechanism underlying the regulatory effect of estrogen (E2) and progesterone (P4) on PAX2 expression was investigated by receptor block assay and double luciferase reporter assay. PAX2 expression was found to be significantly downregulated in EIN and EEC tissues, its overexpression inhibited EEC cell malignant behaviors in vivo and in vitro and inhibited the AKT/mTOR signaling pathway. PAX2 inactivation in EEC was related to promoter methylation, and its expression was regulated by E2 and P4 through their receptors via promoter methylation. Our findings elucidated the expression and function of PAX2 in EEC and have provided hitherto undocumented evidence of the underlying molecular mechanisms. PAX2 expression is suppressed by estrogen prompting its methylation through estrogen receptor. Furthermore, PAX2 regulates the AKT/mTOR signaling pathway to influence EEC progression. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Endometrioide , Hiperplasia Endometrial , Neoplasias do Endométrio , Humanos , Feminino , Animais , Camundongos , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/patologia , Progesterona/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Metilação , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Estrogênios , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo
9.
Int J Nurs Stud ; 152: 104667, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244405

RESUMO

BACKGROUND: Obesity and related diseases have become one of the leading causes of death worldwide, which has been linked to biopsychosocial effects such as type 2 diabetes, cardiovascular disease, various cancers, depression, and weight stigma. Episodic future thinking (EFT) has been found to support the development of changes in health behaviors. However, the effectiveness of EFT in enhancing weight loss behavior and health outcomes is not well supported. OBJECTIVE: To establish implementation options for the EFT intervention, and critically synthesize the data that assesses the impact of EFT on weight loss behavior and health outcomes. METHODS: Searches were performed across 5 Chinese and 9 English databases systematically from inception to March 2023. Randomized controlled trials, written in English or Chinese were included. Two independent reviewers evaluated all relevant studies, who also assessed the risk of bias, and extracted the data. Meta-analyses were conducted using Review Manager 5.4.1. The quantity of evidence's certainty was assessed using the Risk bias assessment tool RoB2 (revised version 2019). This study was registered in PROSPERO. RESULTS: A total of 1740 participants were included, and 18 studies were eligible for inclusion. Meta-analysis reported a statistically significant effect size favoring EFT on delay discounting (AUC) (MD = 0.1, 95 % CI: [0.02, 0.17], P = 0.01; I2 = 73 %), delay discounting (K) (MD = -0.85, 95 % CI: [-1.44, -0.26], P = 0.005; I2 = 77 %), energy intake (MD = -107.59, 95 % CI: [-192.21, -22.97], P = 0.01; I2 = 57 %), grocery purchased (SMD: -0.91, 95 % CI:[-1.48, -0.34], P = 0.002; I2 = 63 %), and BMI (MD = -2.73, 95 % CI: [-5.13, -0.32], P = 0.03; I2 = 0 %, two studies). CONCLUSIONS: EFT was found to have favorable effects on delay discounting, energy intake, grocery purchased, and BMI of individuals. The presence of high heterogeneity is evident in most of the outcomes. The modalities of EFT intervention are still in the exploratory phase, there is no consensus on the valence, context type, longest delay time, and practice strategy, and it needs to be further explored for different populations. It is anticipated that additional well-designed studies will continue developing high-quality evidence in this field.


Assuntos
Comportamentos Relacionados com a Saúde , Redução de Peso , Humanos , Pensamento , Obesidade/psicologia , Previsões
10.
J Sci Food Agric ; 104(7): 4145-4156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294322

RESUMO

BACKGROUND: Wheat is one of the key ingredients used to make Chinese liquor, and its saccharification power and protein content directly affect the quality of the liquor. In pursuit of a non-destructive assessment of wheat components and the optimization of raw material proportions in liquor, this study introduces a precise predictive model that integrates hyperspectral imaging (HSI) with stacked ensemble learning (SEL). RESULTS: This study extracted hyperspectral information from 14 different varieties of wheat and employed various algorithms for preprocessing. It was observed that multiplicative scatter correction (MSC) emerged as the most effective spectral preprocessing method. The feature wavelengths were extracted from the preprocessed spectral data using three different feature extraction methods. Then, single models (support vector machine (SVM), backpropagation neural network (BPNN), random forest (RF), and gradient boosting tree (XGBoost)) and a SEL model were developed to compare the prediction accuracies of the SEL model and the single models based on the full-band spectral data and the characteristic wavelengths. The findings indicate that the MSC-competitive adaptive reweighted sampling-SEL model demonstrated the highest prediction accuracy, with Rp 2 (test set-determined coefficient) values of 0.9308 and 0.9939 for predicting the saccharification power and protein content and root mean square error of the test set values of 0.0081 U and 0.0116 g kg-1, respectively. CONCLUSION: The predictive model established in this study, integrating HSI and SEL models, accurately detected wheat saccharification power and protein content. This validation underscores the practical potential of the SEL model and holds significant importance for non-destructive component analysis of raw materials used in liquor. © 2024 Society of Chemical Industry.


Assuntos
Imageamento Hiperespectral , Triticum , Algoritmos , Redes Neurais de Computação , Máquina de Vetores de Suporte , Análise dos Mínimos Quadrados
11.
Environ Sci Pollut Res Int ; 30(19): 54324-54332, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36940033

RESUMO

At present, diesel vehicles still play an irreplaceable role in the traditional energy field in China. Diesel vehicle exhaust contains hydrocarbons, carbon monoxide, nitrogen oxides, and particulate matter, which can lead to haze weather, photochemical smog, and the greenhouse effect; endanger human health; and damage the ecological environment. In 2020, the number of motor vehicles in China reached 372 million, and the number of automobiles reached 281 million, of which 20.92 million are diesel vehicles, accounting for only 5.6% of the number of motor vehicles and 7.4% of the number of automobiles. Nevertheless, diesel vehicles emitted 88.8% of nitrogen oxides and 99% of particulate matter in total vehicle emissions. Diesel vehicles, especially diesel trucks, have become the top priority of motor vehicle pollution control. However, there are few reviews on the comprehensive treatment of diesel vehicle exhaust. This review provides an overview of exhaust gas composition, hazards, and treatment techniques. Phytoremediation, three-way catalytic conversion, rare earth catalytic degradation, and nanoscale TiO2 catalytic degradation are briefly described.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Humanos , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Gasolina/análise , Monitoramento Ambiental , Material Particulado/análise , Veículos Automotores , Óxidos de Nitrogênio/análise
12.
J Chromatogr Sci ; 62(1): 74-84, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36880115

RESUMO

Scutellaria Radix (SR) is a widely used traditional Chinese medicine in clinics for the therapy of upper respiratory tract infectious diseases. Modern pharmacological investigations indicate that SR exerts a significant bacteriostatic effect on different oral bacteria, but few studies have systematically investigated the main active constituents of SR causing this activity. Spectrum-effect correlation analysis was applied to screening anti-oral-microbial constituents from SR. The aqueous extract of SR was divided into fractions of different polarity and the active fraction was screened using the agar diffusion method. Eighteen batches of SR were further prepared and the chromatography fingerprint was established using high-performance liquid chromatography. The antibacterial activities of these constituents were examined against different oral bacteria. Finally, the spectrum-effect relationship between the fingerprint and those antibacterial effects was analyzed by gray correlation analysis and partial least squares regression. Five active constituents were screened out and their antibacterial activity was systematically confirmed by a knockout/in strategy combined with a biofilm extraction method, which indicated that these five compounds were responsible for the antibacterial activity of SR. These results form the basis for further development and improved quality control of SR in the treatment of oral diseases.


Assuntos
Medicamentos de Ervas Chinesas , Scutellaria , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos , Antibacterianos/farmacologia , Bactérias
13.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36644826

RESUMO

Embryo implantation is a critical step in the establishment of pregnancy. However, the mechanisms of embryo implantation during early pregnancy in goats remain unclear due to the lack of published studies examining the genes involved in embryo implantation. As a popular goat breed in southwest China, Dazu black goats (DBGs) are highly adaptable and exhibit high fertility, making this breed a good model in which to study reproductive performance of goats. Here, morphological analysis showed that compared with the non-pregnant (NP) groups, the endometrial thickness of the goats in the P15 and P19 groups (15 and 19-day pregnant groups, respectively) were increased (P < 0.01). Proliferating Cell Nuclear Antigen (PCNA) staining showed that PCNA was expressed in the NP, P15, and P19 groups. Transcriptome analysis was then conducted to identify gene expression patterns in uterine tissue during DBG embryo implantation. By comparing uterine tissue at different stages of embryonic implantation, 48 in NP_vs._P15, 318 in NP_vs._P19, and 1439 in P15_vs._P19, differentially expressed mRNAs were identified. Gene Ontology (GO) enrichments of the differentially expressed genes were enriched in the extracellular region, extracellular space, transporter activity, extracellular region, immune system process, immune response, and defense response etc. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the biological metabolic pathways with which the differentially expressed genes are associated were explored. Through KEGG analysis, the DBGs were associated with oxidative phosphorylation, complement and coagulation cascades, arginine and proline metabolism, metabolic pathways, arachidonic acid metabolism, and ECM-receptor interaction. These candidate genes (CSF1, C1S, CST6, SLC24A4, HOXA10, HOXA11, MMP9, and ITGA11) and enriched signaling pathways could be valuable references for exploring the molecular mechanisms underlying goat embryo implantation.


Mammalian embryo implantation refers to the process that the embryo normally develops to the blastocyst stage, contacts the maternal endometrium, and establishes one kind structural connection. This intimate connection allows for the process of maternal­fetal material exchange, which is one of the key steps in the successful pregnancy. The success of embryo implantation depends on two aspects of the endometrium and the embryo, 1) the maternal endometrium is in a receptive state, and 2) the embryo develops normally, both of which are indispensable. In this stage, the mechanism of embryo implantation early in goat pregnancy is not clear, as only few limited studies have been conducted into gene expression in the uterus during embryo implantation. In this study, goat uterine tissue was systematically collected during the periods of non-pregnancy, pregnancy recognition, and embryo adhesion. And the morphological changes of the uterus in the different gestational stages were also observed, and gene expression associated with embryo implantation was further analyzed by RNA-seq method. This study provides a preliminary dataset for analyzing the molecular mechanisms regulating goat embryo implantation.


Assuntos
Cabras , Transcriptoma , Gravidez , Feminino , Animais , Antígeno Nuclear de Célula em Proliferação/metabolismo , Cabras/genética , Cabras/metabolismo , Endométrio/metabolismo , Perfilação da Expressão Gênica/veterinária , Implantação do Embrião/genética
14.
Front Endocrinol (Lausanne) ; 13: 1052906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531495

RESUMO

Objective: To explore the relationship between angiotensin-converting enzyme 2 (ACE2) genetic variants and gestational diabetes mellitus (GDM) in a southern Chinese population. Methods: Potential functional variants (rs2106809, rs6632677, and rs2074192) of ACE2 were selected and genotyped in 566 GDM patients and 710 normal pregnaõncies in Guilin, China. The odds ratio (OR) and its corresponding 95% confidence interval (CI) were used to evaluate the association between genetic variant and GDM risk, and then the false positive report probability, multifactor dimensional reduction (MDR), and bioinformatics tools were used to confirm the significant association in the study. Results: After adjusting for age and prepregnancy body mass index, logistic regression analysis showed that ACE2 rs6632677 was significantly associated with a decreased risk of GDM (CC vs. GG: adjusted OR = 0.09, 95% CI: 0.01 - 0.71, P = .023; GC/CC vs. GG: adjusted OR = 0.68, 95% CI = 0.46 - 0.99, P = .048; and CC vs. GG/GC: adjusted OR = 0.09, 95% CI = 0.01 - 0.72, P = .024), whereas rs2074192 was associated with increased GDM risk (TT vs. CC/CT: adjusted OR = 1.38, 95% CI = 1.08 - 1.75, P = .009). Furthermore, we found that rs6632677 interacted with SBP (P interaction = .043) and FPG (P interaction = .021) and rs2074192 interacted with HDL-c (P interaction = .029) and LDL-c (P interaction = .035) to influence the GDM risk of the individual. In the MDR analysis, the rs6632677 was the best one-locus model, and the three-loci model was the best interaction model to predict GDM risk. In addition, functional analysis confirmed that rs2074192 may regulate the splicing process of ACE2 gene. Conclusion: ACE2 gene variants are significantly associated with the risk of GDM via gene-gene and gene-environment combinations. The rs2074192 C > T affects the splicing of the ACE2 gene, which may be a potential mechanism leading to the changed susceptibility of an individual female during pregnancy to GDM.


Assuntos
Diabetes Gestacional , Gravidez , Humanos , Feminino , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/genética , Enzima de Conversão de Angiotensina 2/genética , Polimorfismo de Nucleotídeo Único , População do Leste Asiático , Povo Asiático/genética
15.
Front Vet Sci ; 9: 1055866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467654

RESUMO

Brown adipose tissue (BAT) is mainly present in young mammals and is important for maintaining body temperature in neonatal mammals because of its ability to produce non-shivering thermogenesis. There is usually a large amount of BAT around the kidneys of newborn kids, but the BAT gradually "whiting" after birth. Screening and validating appropriate reference genes is a prerequisite for further studying the mechanism of goat brown adipose tissue "whiting" during the early stages. In this study, the expression stability of 17 candidate reference genes: 12 COPS8, SAP18, IGF2R, PARL, SNRNP200, ACTG1, CLTA, GANAB, GABARAP, PCBP2, CTSB, and CD151) selected based on previous transcriptome data as new candidate reference genes, 3 (PFDN5, CTNNB1, and EIF3M) recommended in previous studies, and 2 traditional reference genes (ACTB and GAPDH) was evaluated. Real-time quantitative PCR (RT-qPCR) technology was used to detect the expression level of candidate reference genes during goat BAT "whiting". Four algorithms: Normfinder, geNorm, ΔCt method, and BestKeeper, and two comprehensive algorithms: ComprFinder and RefFinder, were used to analyze the stability of each candidate reference genes. GABARAP, CLTA, GAPDH, and ACTB were identified as the most stable reference genes, while CTNNB1, CTSB, and EIF3M were the least stable. Moreover, two randomly selected target genes IDH2 and RBP4, were effectively normalized using the selected most stable reference genes. These findings collectively suggest that GABARAP, CLTA, GAPDH, and ACTB are relatively stable reference genes that can potentially be used for the development of perirenal fat in goats.

16.
Front Oncol ; 12: 959322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091173

RESUMO

Cancer is one of the most serious diseases threatening human health, so it is particularly important to develop effective tumor-targeting drugs. As the first CDK4/6 inhibitor, palbociclib effectively inhibits tumor proliferation by blocking the cell cycle to the G1 phase. 10-HCPT is a Topo I inhibitor; however, its clinical application has been greatly limited due to its high toxicity. Based on the successful development of double target inhibitors, three novel palbociclib derivatives (HP-1, HP-2, and HP-3) were designed and synthesized from Palbociclib and 10-HCPT, and their biological activities were investigated. At first, the possible binding sites of the three compounds to Topo I and CDK4/6 were predicted by molecular docking. Then, we evaluated the anti-proliferative effects of the three palbociclib derivatives. In general, human lung cancer cells were more sensitive to HP-1, HP-2, and HP-3, especially NCI-H460. In addition, cell cycle arrest and apoptosis induction were investigated by flow cytometry. The three palbociclib derivatives, especially HP-1, had obvious cell cycle arrest phenomenon on NCI-H460 cells and induced apoptosis of NCI-H460 cells significantly. In the end, it was proved that these three drugs had obvious cyclin-dependent kinase inhibitory activities. In short, all the data showed that HP-1, HP-2, and HP-3 could play anti-cancer roles by acting on dual targets and had the characteristics of high efficiencies and low toxicities, which opened up a new idea for the study of palbociclib derivatives.

17.
Circ Res ; 131(5): 456-472, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35920168

RESUMO

BACKGROUND: Ischemic heart disease is a major global public health challenge, and its functional outcomes remain poor. Lysine crotonylation (Kcr) was recently identified as a post-translational histone modification that robustly indicates active promoters. However, the role of Kcr in myocardial injury is unknown. In this study, we aimed to clarify the pathophysiological significance of Kcr in cardiac injury and explore the underlying mechanism. METHODS: We investigated the dynamic change of both the Kcr sites and protein level in left ventricular tissues at 2 time points following sham or cardiac ischemia-reperfusion injury, followed by liquid chromatography-coupled tandem mass tag mass spectrometry. After validation of the enriched protein Kcr by immunoprecipitation and Western blot, the function and mechanism of specific Kcr sites were further investigated in vitro and in vivo by gain- or loss-of-function mutations targeting Kcr sites of selected proteins. RESULTS: We found that cardiac ischemia-reperfusion injury triggers preferential Kcr of proteins required for cardiomyocyte contractility, including mitochondrial and cytoskeleton proteins, which occurs largely independently of protein-level changes in the same proteins. Those exhibiting Kcr changes were associated not only with disruption of cardiomyocyte mitochondrial, sarcomere architecture, and gap junction but also with cardiomyocyte autophagy and apoptosis. Modulating site-specific Kcr of selected mitochondrial protein IDH3a (isocitrate dehydrogenase 3 [NAD+] alpha) at K199 and cytoskeletal protein TPM1 (tropomyosin alpha-1 chain) at K28/29 or enhancing general Kcr via sodium crotonate provision not only protects cardiomyocyte from apoptosis by inhibiting BNIP3 (Bcl-2 adenovirus E18 19-kDa-interacting protein 3)-mediated mitophagy or cytoskeleton structure rearrangement but also preserves postinjury myocardial function by inhibiting fibrosis and apoptosis. CONCLUSIONS: Our results indicate that Kcr modulation is a key response of cardiomyocytes to ischemia-reperfusion injury and may represent a novel therapeutic target in the context of ischemic heart disease.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão , Humanos , Lisina/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
18.
Animals (Basel) ; 12(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454283

RESUMO

The phenotypic characteristics of existing domestic pigs (DPs) greatly differ from those of wild boar (WB) populations thousands of years ago. After thousands of years of human domestication, WB and DP have diverged greatly in terms of genetics. Theoretically, worldwide local pigs have independent contributions from their local WBs at the beginning of Sus scrofa domestication. The investigation of the vicissitude of the heredity material between domestic populations and their wild ancestors will help in further understanding the domestication history of domestic animals. In the present study, we performed a genome-wide association scan (GWSA) and phylogeny estimation with a total of 1098 public European Illumina 60K single nucleotide polymorphism data, which included 650 local DPs and 448 WBs. The results revealed that the phylogenetic relationship of WBs corresponds to their geographical distribution and carries large divergence with DPs, and all WB breeds (e.g., HRWB, SBWB, and TIWB) presents a closely linkage with the middle WB (e.g., HRWB, and PLWB). In addition, 64 selected candidate genes (e.g., IDH2, PIP5K1B, SMARCA2, KIF5C, and TJP2) were identified from GWSA. A total of 63 known multiple biological functional pathways were annotated by 22 genes, and ubiquinone and other terpenoid-quinone biosynthesis pathways that belong to the metabolism of cofactors and vitamins were significantly enriched (p < 0.05). The most frequent (28.57%) pathways were classified under metabolism. We confirmed that the middle European WB has made an important genetic contribution to the entire European WB populations. A series of selected genes discovered from this study provides the scientific community with a deeper understanding of the heredity performance of metabolism and emotion and the real purpose behind domestication.

19.
Biochem Soc Trans ; 50(1): 447-457, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34940800

RESUMO

Obesity and its associated metabolic diseases, including diabetes, insulin resistance, and inflammation, are rapidly becoming a global health concern. Moreover, obese individuals are more likely to be infected with COVID-19. New research on adipose tissue is required to help us understand these metabolic diseases and their regulatory processes. Recently, extracellular vesicles (EVs) have been identified as novel intercellular vectors with a wide range of regulatory functions. The miRNAs carried by EVs participate in the regulation of white adipose tissue (WAT) browning, insulin resistance, diabetes, and inflammation. In addition, EV miRNAs demonstrate great potential for helping elucidating the mechanism of metabolic diseases, and for advancing their prevention and treatment. In this review, we focus on the mechanisms underlying the regulation of adipose differentiation and metabolic diseases by adipose-derived EV miRNAs. Understanding the role of these miRNAs should enrich our understanding of the etiology and pathogenesis of metabolic diseases caused by obesity.


Assuntos
Tecido Adiposo/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs , Obesidade/metabolismo , Animais , Humanos
20.
Gene ; 790: 145706, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33979681

RESUMO

Previous studies have shown that extracellular vesicles (EVs) containing proteins, lipids, nucleic acids and other biological components exist in all kinds of body fluids. EVs, as an intercellular communication carrier, regulate the functions of its target cells by transporting biomacromolecules between cells. In this study, a total of six female Dazu black goats were divided into NP group (NP, non-pregnant group) and P30 (P30, 30-day pregnant group). The goats in NP group (n = 3) were in estrus, but failed to fertilize; the other goats in P30 group (n = 3) were fertilized by natural mating. Firstly, goats plasma-derived EVs were isolated using ultracentrifugation. Secondly, EVs were identified by transmission electron microscope (TEM), dynamic light scattering (DLS), and by testing its markers (CD9 and CD63) using west blotting in NP and P30 groups, respectively. Thirdly, EVs related miRNAs were sequenced and analyzed by bioinformatics method. Data shows that miR-31-5p, miR-137-3p, novel_miR_1355, novel_miR_734 and novel_miR_736 exclusively were expressed in P30 group. Their target genes were significantly enriched in the axon guidance, the Notch signaling pathway, the Wnt signaling pathway, tight junction and the Hippo signaling pathway. And miRNA-mRNA interactive network analysis reveals potential regulatory functions of miRNAs for goat during early pregnancy. These findings provided theretical references for studying the regulation of plasma-derived EVs between the fetal and placental development, and these candidate miRNAs identified might be as markers for diagnosis of goat early pregnancy.


Assuntos
MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Vesículas Extracelulares/metabolismo , Feto/metabolismo , Placentação , RNA Mensageiro/metabolismo , Animais , Biologia Computacional , Vesículas Extracelulares/genética , Feminino , Feto/citologia , Cabras , Gravidez , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA