Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(8): 1698-1704, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39113194

RESUMO

Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.


Assuntos
Bifidobacterium longum subspecies infantis , Neoplasias da Mama , Neoplasias Colorretais , Proteína Smad4 , Fator de Crescimento Transformador beta , Humanos , Proteína Smad4/metabolismo , Proteína Smad4/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta/metabolismo , Bifidobacterium longum subspecies infantis/metabolismo , Bifidobacterium longum subspecies infantis/genética , Feminino , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Probióticos , Antineoplásicos/farmacologia
2.
Antonie Van Leeuwenhoek ; 117(1): 50, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472420

RESUMO

A strictly anaerobic, Gram-stain-negative, catalase-negative, cocci-shaped, and propionate-producing bacterial strain, named Ds1651T was isolated from the fecal sample collected from a South Korean infant. Through a comparison of 16S rRNA gene sequences, it was revealed that Ds1651T had the highest phylogenetic affinity with Veillonella nakazawae KCTC 25297 T (99.86%), followed by Veillonella infantium KCTC 25370 T (99.80%), and Veillonella dispar KCTC 25309 T (99.73%) in the family Veillonellaceae. Average nucleotide identity values between Ds1651T and three reference species were 95.48% for Veillonella nakazawae KCTC 25297 T, 94.46% for Veillonella infantium KCTC 25370 T, and 92.81% for Veillonella dispar KCTC 25309 T. The G + C content of Ds1651T was 38.58 mol%. Major fermentation end-products were acetic and propionic acids in Trypticase peptone glucose yeast extract broth with 1% (v/v) sodium lactate. The predominant cellular fatty acids that account for more than 10% were summed in Feature 8 (C17:1 ω8c and/or C17:2) and C13:0. Based on the findings from phylogenetic, genomic, phenotypic, and chemotaxonomic studies, we propose that the type strain Ds1651T (= KCTC 25477 T = GDMCC 1.3707 T) represents a novel bacterial species within the genus Veillonella, with the proposed name Veillonella faecalis sp. nov.


Assuntos
Propionatos , Veillonella , Humanos , Veillonella/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos , Fezes/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Fosfolipídeos
3.
Gut Microbes ; 14(1): 2121580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36130031

RESUMO

Little is known about the modulatory capacity of the microbiota in early intestinal development. We examined various intestinal models that respond to gut microbial metabolites based on human pluripotent stem cell-derived human intestinal organoids (hIOs): physiologically relevant in vitro fetal-like intestine, intestinal stem cell, and intestinal disease models. We found that a newly isolated Limosilactobacillus reuteri strain DS0384 accelerated maturation of the fetal intestine using 3D hIO with immature fetal characteristics. Comparative metabolomic profiling analysis revealed that the secreted metabolite N-carbamyl glutamic acid (NCG) is involved in the beneficial effect of DS0384 cell-free supernatants on the intestinal maturation of hIOs. Experiments in an intestinal stem cell spheroid model and hIO-based intestinal inflamed model revealed that the cell-free supernatant from DS0384 comprising NCG promoted intestinal stem cell proliferation and was important for intestinal protection against cytokine-induced intestinal epithelial injury. The probiotic properties of DS0384 were also evaluated, including acid and bile tolerance and ability to adhere to human intestinal cells. Seven-day oral administration of DS0384 and cell-free supernatant promoted the intestinal development of newborn mice. Moreover, NCG exerted a protective effect on experimental colitis in mice. These results suggest that DS0384 is a useful agent for probiotic applications and therapeutic treatment for disorders of early gut development and for preventing intestinal barrier dysfunction.


Assuntos
Microbioma Gastrointestinal , Células-Tronco Pluripotentes , Animais , Citocinas/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Organoides , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA