RESUMO
Sensitive imaging of microRNAs (miRNAs) in tumor cells holds great significance in the domains of pathology, drug development, and personalized diagnosis and treatment. DNA nanostructures possess excellent biostability and programmability and are suitable as carriers for intracellular imaging probes. With its highly controllable motion mechanism and remarkable target recognition specificity, the DNA walker is an ideal tool for living cell imaging. Here, we report a DNA nanowire based-DNAzyme Walker (D-Walker), which loads the DNAzyme based-molecular beacon (D-MB) onto DNA nanowires (NWs) functionalized with aptamers. The experimental results demonstrated that the intracellular target miRNA can specifically activate the pre-locked DNAzyme through a strand displacement reaction, thereby triggering the cleavage of its substrate molecular beacon (MB) and subsequent fluorescence emission. NWs decorated with aptamers can effectively prevent the degradation of the D-Walker by nuclease, and can enter target cells without any transfection reagents, which enhances the stability and reliability of cell imaging. Furthermore, the D-Walker exhibited a remarkable sensitivity with a limit of detection (LOD) of 61 pM and was capable of distinguishing miRNA-21 from other closely related family members. This study provides a novel strategy for intracellular miRNA imaging, offering a promising tool for cancer diagnosis and treatment.
RESUMO
Biomass and its derivatives, with their renewable characteristics, cost-effectiveness, and controllable structural and compositional properties, are promising precursors for carbon materials. Herein, N,O-codoped carbon aerogels were synthesized by carbonization and zinc nitrate activation of histidine. The specific surface area (SSA) was markedly increased with the addition of zinc nitrate, and the maximum value achieved 853 m2 g-1 for ZHC-11 obtained with the molar ratio of 1:1 between histidine and zinc nitrate. The D/G-band intensity ratio increased from 1.55 for the histidine-derived control sample HC to 1.65 for ZHC-11, indicating the enhancement of amorphous feature. The nitrogen content increased from 6.5% for HC to 1.60 for ZHC-11. The optimized microstructure and enriched heteroatom doping are beneficial to the capacitance performance. The optimum electrode exhibited 234.1 F g-1 at 0.1 A g-1 and maintained 116.5 F g-1 at 60 A g-1 in a three-electrode system. In particular, the symmetric supercapacitor showed 121.9 F g-1 and 19.5 Wh kg-1 at 0.2 A g-1. This research offers guidance on the cost-effective synthesis of carbon materials for supercapacitors, while also providing novel insights to realize the complete utilization of biomass derivatives.
RESUMO
The incompatibility between electrolyte ions and electrode pore sizes, coupled with the extensive use of activators and dopants, significantly restricts the fabrication of porous carbon materials. Consequently, developing environmentally sustainable and efficient methodologies that exploit the intrinsic properties and pretreatment of materials to facilitate self-activation and self-doping becomes crucial. In this study, potassium histidine and magnesium histidine molecular salts were synthesized as precursors, enabling specific ion activation and bimetallic template-directed tunable porosity through a one-step carbonization process. Notably, the ratio of bimolecular salts significantly influenced the porous structure of carbon, the properties of heteroatoms, and the electrochemical performance. By optimizing the ratio, the porous carbon materials exhibited high accessibility to electrolyte ions and effective ion/electron transport channels. Consequently, the optimal sample (NOSPC-2) achieved a high specific capacitance of 318 F g-1 at 0.1 A g-1 and a good capacitance retention rate of 98.8% after 50,000 cycles at 5 A g-1. In addition, NOSPC-2 also boasted high energy density and power density, reaching 22 Wh kg-1 and 25 kW kg-1, respectively. This research represents a significant stride in advancing preparation technologies for small molecule derived porous carbon materials, providing valuable insights for the rational design of carbon electrode materials for capacitive energy storage.
RESUMO
The preparation of porous carbon is constrained by the extensive use and detrimental impact of activators and dopants. Therefore, developing green and efficient strategies that leverage the intrinsic properties and pretreatment of the materials to achieve self-activation and self-doping is particularly crucial for porous carbon materials. Herein, potassium histidine was utilized as the molecular salt precursor, attaining the efficient and streamlined preparation of porous carbon through a one-step carbonization process that enables self-activation, self-doping, and self-templating. More interestingly, the carbonization temperature significantly impacts the porous structure of the molecular salt precursors, the properties of the heteroatoms, and electrochemical performance. The designed electrodes exhibit high accessibility to electrolyte ions and effective ion-electron transport channels. Therefore, the optimal carbon material (KHis800) has an excellent mass-specific capacitance of 305.2 F g-1 at 0.2 A g-1, and a high capacitance retention rate of 115.6% (50,000 cycles at 5 A g-1). Notably, KHis800 also shows a maximum energy density of 19.6 Wh kg-1. This research is dedicated to exploring a more efficient preparation method for porous carbon material via molecular salts, offering insights for the sustainable development of carbon materials.
RESUMO
A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining in situ templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (Kx) have a high specific surface area (1021-1676 m2 g-1) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g-1 at 0.1 A g-1. It still retained 113 F g-1 at 55 A g-1. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100â¯000 cycles at 10 A g-1. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg-1. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.
RESUMO
As the first ladder of China, the Qinghai-Tibet Plateau has always been known as the "roof of the world". Its environmental carrying capacity can be estimated more accurately than other regions because of its harsh natural environment, low population density, limited industrial and agricultural development, and low human activities. However, the current ecological risks of Co and threshold research are limited, and there is a lack of awareness of W's environmental risks. Hence, this study assessed the ecological support potential of the Bardawu region within Dulan County, Qinghai Province, using 7373 soil specimens, determined regional soil baseline measures, and applied the substance equilibrium linear technique along with the ecological aggregate indicator technique to examine the heavy metal content of the soil. A comprehensive evaluation of the environmental capacity and health risks was conducted to provide a reference for pastoral planning. The findings indicated that the cumulative static ecological capacity of the six trace heavy elements in the soil was ranked as follows: Cr > Li > Ni > Cu > W > Co, with W and Co positioned as the final pair. The remaining areas with a high environmental capacity were predominantly found in the study zone. The central sector exhibited diminished environmental capacity in the southwest and northeast and presented a contamination hazard. Land use, soil type, and geological type considerably affected the six elements in the study area at the p < 0.05. The Bardawu region's mean comprehensive index of soil environmental capacity was 0.98, indicating an intermediate level of environmental capacity and a moderate health risk. This study focuses on the geological context and influence of pastoral activities on the soil, augments the distribution of various elements across the Tibetan Plateau, and suggests preliminary soil governance strategies. The findings of this study lay the groundwork for soil environmental conservation and remediation efforts in highland regions.
RESUMO
Here, an unusual MXene with a high ratio of oxygen functional groups was prepared by hydrothermal treatment of HF-etched MXene in aqueous KOH solution. The prepared MXene (H-220) exhibits ultrahigh specific capacitance (1030 F g-1 in a potential window of 0.85 V), and excellent rate and cycling performance simultaneously in a sulfuric acid electrolyte, and can act as an anode material of proton batteries.
RESUMO
DNA nanostructures are easy to design and construct, have good biocompatibility, and show great potential in biosensing and drug delivery. Numerous distinctive and versatile DNA nanostructures have been developed and explored for biomedical applications. In addition to DNA nanostructures that are completely assembled from DNA, composite DNA nanostructures obtained by combining DNA with other organic or inorganic materials are also widely used in related research. The CRISPR/Cas system has attracted great attention as a powerful gene editing technology and is also widely used in biomedical diagnosis. Many researchers are committed to exploring new possibilities by combining DNA nanostructures with CRISPR/Cas systems. These explorations provide support for the development of new detection methods and cargo delivery pathways, provide inspiration for improving relevant gene editing platforms, and further expand the application scope of DNA nanostructures and CRISPR/Cas systems. This paper mainly reviews the design principles and biomedical applications of CRISPR/Cas combined with DNA nanostructures based on the types of DNA nanostructures. Finally, the application status, challenges and development prospects of CRISPR/Cas combined with DNA nanostructures in detection and delivery are summarized. It is expected that this review will enable researchers to better understand the current state of the field and provide insights into the application of CRISPR/Cas systems and the development of DNA nanostructures.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Sistemas de Liberação de Medicamentos , DNARESUMO
Background: As a therapy to prevent and treat hypertension, exercise is widely used in clinical practice. But due to the lack of documentary evidence, Baduanjin as a relaxed and convenient mode of exercise is not currently recommended by professional health organizations to treat hypertension. The purpose of this article is to examine the efficacy of Baduanjin as an antihypertensive exercise therapy. Methods: Our systematic retrieved of the entire relevant literatures in 12 databases. Finally, 28 eligible trials involving Baduanjin intervention in hypertension were included. After the quality assessment and bias risk assessment of the included trials, we analyzed the blood pressure values before and after the intervention, and performed meta-analysis on the random effect results. In order to explore the factors influencing the decrease of blood pressure, we also performed a subgroup analysis of the results. Results: Participants (n = 2121) were adults (61.74 ± 5.85years of age, mean ± SD), with baseline blood pressure (systolic blood pressure (SBP) = 150.7 ± 9.2 mmHg, diastolic blood pressure (DBP) = 93.2 ± 8.8 mmHg). Baduanjin was practiced 7.5 ± 3.8 sessions / week for 28.2 ± 12.8 min /session for 16.7 ± 9.2 weeks. Overall, Baduanjin resulted in SBP (-9.3 mmHg, d = -1.49, 95%CI: -1.73 to -1.13) and DBP (-6.3 mmHg, d = -1.20, 95%CI: -1.51 to -0.88) vs. the control group (p < 0.001). After a subgroup analysis of age, we found that SBP heterogeneity was significantly reduced in the elderly group. Conclusion: Our results indicate that Baduanjin can effectively reduce blood pressure (i.e., 9.3 mmHg and 6.3 mmHg of SBP and DBP reductions, respectively), and reduce the incidence rate of cardiovascular disease in hypertensive patients. In addition, we will be more likely to recommend that the elderly exercise Baduanjin.
RESUMO
Alveolar macrophages (AMs) are critical mediators of pulmonary inflammation. Given the unique lung tissue environment, whether there exist AM-specific mechanisms that control inflammation is not known. Here, we found that among various tissue-resident macrophage populations, AMs specifically expressed Lepr, encoding receptor for a key metabolic hormone leptin. AM-intrinsic Lepr signaling attenuated pulmonary inflammation in vivo, manifested as subdued acute lung injury yet compromised host defense against Streptococcus pneumoniae infection. Lepr signaling protected AMs from necroptosis and thus constrained neutrophil recruitment and tissue damage secondary to release of proinflammatory cytokine interleukin-1α. Mechanistically, Lepr signaling sustained activation of adenosine monophosphate-activated protein kinase in a Ca2+ influx-dependent manner and rewired cellular metabolism, thus preventing excessive lipid droplet formation and overloaded metabolic stress in a lipid-rich alveolar microenvironment. In conclusion, our results defined AM-expressed Lepr as a metabolic checkpoint of pulmonary inflammation and exemplified a macrophage tissue adaptation strategy for maintenance of immune homeostasis.
Assuntos
Macrófagos Alveolares , Pneumonia , Humanos , Inflamação/metabolismo , Leptina/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Receptores para Leptina/genéticaRESUMO
Water pollution is a global challenge endangering people's health. In this work, an ultra-efficient photodegradation system of Rhodamine B (RhB) has been established using a graphitic carbon nitride nanosheet (CNNS) as the semiconductor photocatalyst, from which energy is harvested on both the conduction band and valence band by formic acid and hydrogen peroxide, respectively. The optimized FA/H2O2/CNNS system increases the apparent photodegradation rate of RhB by 25 folds, from 0.0198 to 0.4975 min-1. Through a comprehensive investigation with reactive oxygen species scavengers, electron paramagnetic resonance, high-performance liquid chromatography-mass spectrometry, etc., an oxidative mechanism for RhB photodegradation has been proposed, which combines enhanced charge carrier migration and synergistic generation of multiple radicals. Comparable performance improvements have also been observed for similar systems with different semiconductors, suggesting that such a catalytic system could afford a general approach to enhance semiconductor-catalyzed photodegradation.
Assuntos
Peróxido de Hidrogênio , Luz , Formiatos , Humanos , Estresse Oxidativo , Fotólise , RodaminasRESUMO
The Fenton-like reaction has great potential in water treatment. Herein, an efficient and reusable catalytic system is developed based on atomically dispersed Fe catalyst by anchoring Fe atoms on nitrogen-doped porous carbon (Fe SA/NPCs). The catalyst of Fe SA/NPCs exhibits enhanced performance in activating peroxymonosulfate (PMS) for organic pollutant degradation and bacterial inactivation. The Fe SA/NPCs + PMS system demonstrates a high turnover frequency of 39.31 min-1 in Rhodamine B (RhB) degradation as well as a strong bactericidal activity that can completely sterilize an Escherichia coli culture within 5 min. Meanwhile, the degradation activity of RhB by Fe SA/NPCs is improved up to 28 to 371-fold in comparison with the controls. Complete degradation of RhB can be achieved in 30 s by the Fe SA/NPCs + PMS system, demonstrating an efficiency much higher than most traditional Fenton-like processes. Experiments with different radical scavengers and density functional theory calculations have revealed that singlet oxygen (1 O2 ) generated on the N-coordinated single Fe atom (Fe-N4 ) sites is the key reactive species for the effective and rapid pollutant degradation and bacterial inactivation. This work innovatively affords a promising single-Fe-atom catalyst/PMS system for applying Fenton-like reactions in water treatment.
Assuntos
Desinfecção , Ferro , Bactérias , Carbono , CatáliseRESUMO
Designing intertwined porous structure is highly desirable to improve the electrochemical performance of carbon materials for supercapacitor. In this contribution, three-dimensional (3D) carbonized polyimide/cellulose (CPC) composite is fabricated via a facile "one-step" carbonization, in which cellulose as cross-linked agent is capable of modulating the molecular structure of polyamic acid, thus ensuring the formation of intertwined porous networks in the obtained carbon skeleton. Benefitting from the high specific surface area (951 m2 g-1) and uniformly distributed pores, the optimized CPC-5 electrode exhibits an outstanding specific capacitance of 300F g-1 in 6.0 M KOH electrolyte. More impressively, the CPC-5 based symmetrical supercapacitor affords a high energy density of 22.6 Wh kg-1 at power density of 800 W kg-1, as well as an exceptional capacitance retention of 91.4% after 10,000 cycles. This work affords an effective strategy to yield a promising polyimide derived carbon material for high-performance supercapacitors.
Assuntos
Carbono , Celulose , Capacitância Elétrica , Eletrodos , PorosidadeRESUMO
For the proliferation of the supercapacitor technology, it is essential to attain superior areal and volumetric performance. Nevertheless, maintaining stable areal/volumetric capacitance and rate capability, especially for thick electrodes, remains a fundamental challenge. Here, for the first time, a rationally designed porous monolithic electrode is reported with high thickness of 800 µm (46.74 mg cm-2 , with high areal mass loading of NiCo2 S4 6.9 mg cm-2 ) in which redox-active Ag nanoparticles and NiCo2 S4 nanosheets are sequentially decorated on highly conductive wood-derived carbon (WC) substrates. The hierarchically assembled WC@Ag@NiCo2 S4 electrode exhibits outstanding areal capacitance of 6.09 F cm-2 and long-term stability of 84.5% up to 10 000 cycles, as well as exceptional rate capability at 50 mA cm-2 . The asymmetric cell with an anode of WC@Ag and a cathode of WC@Ag@NiCo2 S4 delivers areal/volumetric energy density of 0.59 mWh cm-2 /3.93 mWh cm-3 , which is much-improved performance compared to those of most reported thick electrodes at the same scale. Theoretical calculations verify that the enhanced performance could be attributed to the decreased adsorption energy of OH- and the down-shifted d-band of Ag atoms, which can accelerate the electron transport and ion transfer.
RESUMO
Rational design of electrode with hierarchical charge-transfer structure and good electronic conductivity is important to achieve high specific capacitance and energy density for supercapacitor, but it still remains a challenge. Herein, a nitrogen, sulfur co-doped pollen-derived carbon/graphene (PCG) composite with interconnected "sphere-in-layer" structure was fabricated, in which hierarchically pollen-derived carbon microspheres can serve as "porous spacers" to prevent the agglomeration of graphene nanosheets. The optimized PCG composite prepared with 0.5 wt% of graphene oxide (PCG-0.5) exhibited high specific capacitance (420Fg-1 at 1Ag-1), rate performance (280Fg-1 at 20Ag-1), and excellent cycling stability with 94% of capacitance retention after 10,000 cycles. The symmetrical device delivered a remarkable energy density of 31.3Whkg-1 in neutral medium. Moreover, density functional theory calculation revealed that PCG electrode possessed the accelerated charge transfer and enhanced electronic conductivity, thus ensuring a remarkable electrochemical performance. This work may afford an effective strategy for the development of biomass-derived carbon electrodes with novel charge-transfer structure toward supercapacitor applications.
RESUMO
Oxygen reduction reaction (ORR) electrocatalysts derived from biomass have become one of the research focuses in hetero-catalysis due to their low cost, high performance, and reproducibility properties. Related researches are of great significance for the development of next-generation fuel cells and metal-air batteries. Herein, the preparation methods of various biomass-derived catalysts and their performance in alkaline, neutral, and acidic media are summarized. This review clarifies the research progress of biomass carbon-based electrocatalysts for ORR in acidic, alkaline and neutral media, and discusses the future development trends. This minireview can give us an important enlightenment to practical application in the future.
RESUMO
Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nanofibers have been employed as a promising candidate for the fabrication of food packaging materials. Actually, the electrospun nanofibers used in food packaging must possess biocompatibility and low toxicity. In addition, in order to maintain the quality of food and extend its shelf life, food packaging materials also need to have certain functionality. Herein, in this timely review, functional materials produced from electrospinning toward food packaging are highlighted. At first, various strategies for the preparation of polymer electrospun fiber are introduced, then the characteristics of different packaging films and their successful applications in food packaging are summarized, including degradable materials, superhydrophobic materials, edible materials, antibacterial materials and high barrier materials. Finally, the future perspective and key challenges of polymer electrospun nanofibers for food packaging are also discussed. Hopefully, this review would provide a fundamental insight into the development of electrospun functional materials with high performance for food packaging.
RESUMO
Development of efficient metal-free electrocatalysts derived from biomass with high activity towards oxygen reduction reaction (ORR) has gained significance attention due to their low manufacturing cost, environmental friendliness and easy large-scale production. Hence, we present a facile method to prepare nitrogen-self-doped carbon aerogels (NSCAs) with a three-dimensional (3D) interconnected porous structure and large surface area. The sample is prepared via high-temperature pyrolysis using gelatin as precursor and sodium chloride (NaCl) as sacrificial template. The obtained NSCA-800 catalyst shows excellent ORR performance in O2-saturated alkaline electrolyte, which is comparable to a commercial Pt/C catalyst, in terms of its onset potential (0.92 V vs. RHE), half-wave potential (0.77 V vs. RHE), and limited current density (5.31 mA cm-2). Particularly, the NSCA-800 catalyst exhibits outstanding long-term stability, its ORR kinetic current still retains 95.7% after a continuous 4 h test while that for commercial Pt/C retains just 74.3%. The sustainable biomass gelatin is a promising precursor for the development of carbon materials as effective ORR catalysts.
RESUMO
Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy.
RESUMO
The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K0.5Na0.5NbO3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials.