Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409204, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010735

RESUMO

Two-dimensional (2D) nonlayered metal compounds with porous structure show broad application prospects in electrochemistry-related fields due to their abundant active sites, open ions/electrons diffusion channels, and faradaic reactions. However, scalable and universal synthesis of 2D porous compounds still remains challenging. Here, inspired by blowing gum, a metal-organic gel (MOG) rapid redox transformation (MRRT) strategy is proposed for the mass production of a wide variety of 2D porous metal oxides. Adequate crosslinking degree of MOG precursor and its rapid redox with NO3- are critical for generating gas pressure from interior to exterior, thus blowing the MOG into 2D carbon nanosheets, which further act as self-sacrifice template for formation of oxides with porous and ultrathin structure. The versatility of this strategy is demonstrated by the fabrication of 39 metal oxides, including 10 transition metal oxides, one II-main group oxide, two III-main group oxides, 22 perovskite oxides, four high-entropy oxides. As an illustrative verification, the 2D transition metal oxides exhibit excellent capacitive deionization (CDI) performance. Moreover, the assembled CDI cell could act as desalting battery to supply electrical energy during electrode regeneration. This MRRT strategy offers opportunities for achieving universal synthesis of 2D porous oxides with nonlayered structures and studying their electrochemistry-related applications.

2.
Small ; 19(47): e2303019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548139

RESUMO

Nanostructured transitional metal compounds (TMCs) have demonstrated extraordinary promise for high-efficient and rapid lithium storage. However, good performance is usually limited to electrodes with low mass loading (≤1.0 mg cm-2 ) and is difficult to realize at higher mass loading due to increased electrons/ions transport limitations in the thicker electrode. Herein, the multi-dimensional synergistic nanoarchitecture design of graphene-wrapped MnO@carbon microcapsules (capsule-like MnO@C-G) is reported, which demonstrates impressive mass loading-independent lithium storage properties. Highly porous MnO nanoclusters assembled by 0D nanocrystals facilitate sufficient electrolyte infiltration and shorten the solid-state ions transport path. 1D carbon shell, 2D graphene, and 3D continuous network with tight interconnection accelerate electrons transport inside the thick electrode. The capsule-like MnO@C-G delivers ultrahigh gravimetric capacity retention of 91.0% as the mass loading increases 4.3 times, while the areal capacities increase linearly with the mass loading at various current densities. Specifically, the capsule-like MnO@C electrode delivers a remarkable areal capacity of 2.0 mAh cm-2 at a mass loading of 3.0 mg cm-2 . Moreover, the capsule-like MnO@C also demonstrates excellent performance in full battery applications. This study demonstrates the effectiveness of multi-dimensional synergistic nanoarchitecture in achieving mass loading-independent performance, which can be extended to other TMCs for electrochemical energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA