Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 309(Pt 1): 136677, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191762

RESUMO

Benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) are the most commonly used UV stabilizers and recalcitrant contaminants that are widely distributed in aquatic environments. The novelty of this study was to investigate the role of RCSs in the enhanced degradation of BT and 5-MeBT during the sunlight/free chlorine process. The results showed that sunlight/free chlorine could enhance the degradation of BT and 5-MeBT compared with that obtained with sunlight irradiation and chlorination alone, and this process was well described by pseudo-first-order kinetics. The degradation rate constants of BT and 5-MeBT during sunlight/free chlorine treatment at pH 7 were 0.094 ± 0.001 min-1 and 0.134 ± 0.002 min-1, respectively. The degradation rates further increased with increases in the chlorine dosage and under alkaline conditions (3.818 ± 0.243 min-1 for BT and 7.754 ± 0.716 min-1 for 5-MeBT at pH 9). The enhanced removal obtained during the sunlight/free chlorine process could be attributed to the generation of HO• and reactive chlorine species (RCSs), such as Cl• and ClO•. Under alkaline conditions, RCSs were the dominant reactive species, and their contribution increased from 21.2% to 98.7% with increases in the pH from 7 to 9; this phenomenon was due to changes in free chlorine and BT speciation. Radical scavenging tests further verified that BT was mainly decomposed by ClO•, and ClO• showed high reactivity toward deprotonated BT through second-order rate constant estimation. A byproduct analysis demonstrated that BT underwent hydroxylation and chlorine substitution, and a high yield of 1-chlorobenzotriazole (1-ClBT) formation was observed. Even though the sunlight/free chlorine process resulted in a low level of mineralization, no Microtox® toxicity was detected in the treated solutions. Briefly, the significant contribution of ClO• to BT removal under alkaline conditions implies that sunlight/free chlorine could be utilized in a broader range of treatment conditions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/análise , Luz Solar , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Raios Ultravioleta , Cinética , Cloretos , Oxirredução
2.
Water Res ; 207: 117805, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34736002

RESUMO

The global distribution and environmental persistence of perfluoroalkyl acids (PFAAs) has been considered a critical environmental concern. In this work, we successfully fabricated a graphene oxide-titanium dioxide (GOTiO2) photoelectrode for perfluorooctane sulfonate (PFOS) degradation in a photoelectrochemical (PEC) system. The results reveal that a 5 wt.% GOTiO2 anode possesses the optimal PEC performance, with a band gap (Eg) of 2.42 eV, specific surface area (SBET) of 72.6 m2 g-1 and specific capacitance (Cs) of 4.63 mF cm-2. In the PEC system, PFOS can be efficiently removed within 4 h of reaction time, with a pseudo-first-order rate constant of 0.0124 min-1, under the optimized conditions of current density = 20 mA cm-2, electrode distance = 5 mm, solution pH = 5.64, [PFOS]0= 0.5 µM and NaClO4 electrolyte concentration = 50 mM. The electron transfer pathway, hydroxyl radicals and superoxide radicals are all responsible for PFOS decomposition/transformation. New degradation pathways were identified; a total of 25 PFOS byproducts are reported in this work; and perfluoroalkane sulfonates (PFSAs), perfluorinated aldehydes (PFALs) and hydrofluorocarbons (HFCs) were identified for the first time. PFOS degradation involves the desulfonation pathway as the first step, followed by oxidation and subsequent defluorination, decarboxylation, decarbonylation, sulfonation, defluorination and hydroxylation. The results from this work also show that the reactivity of PFAAs is related to their carbon chain length, with shorter-chain PFAAs exhibiting a lower degradation rate. In a PFAA mixture, a decline in the degradation rate was observed for the shorter-chain-length PFAAs, suggesting stronger competitive inhibition and indicating stronger environmental recalcitrance during the treatment process. Novelty statement: Although many efforts have been made to identify perfluorooctane sulfonate (PFOS) degradation byproducts, previous studies were only able to identify byproducts that are related to perfluorinated carboxylic acids (PFCAs). This is the first study to elucidate the new PFOS degradation pathway; furthermore, this is the first report to identify byproducts containing sulfonate groups (perfluoroalkane sulfonates, PFSAs), aldehyde groups (perfluorinated aldehydes, PFALs), and hydrofluorocarbons (HFCs). This study further systematically explores how perfluoroalkyl acid (PFAA) degradation may be affected in the mixture system: shorter-chain-length PFAAs suffer stronger competitive inhibition in the photoelectrochemical (PEC) system. By utilizing the graphene oxide-titanium dioxide (GOTiO2) photoelectrode fabricated in this work, PFOS can be successfully decomposed during the PEC process for the first time.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Carboxílicos , Monitoramento Ambiental , Fluorocarbonos/análise
3.
Chemosphere ; 271: 129507, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33445022

RESUMO

Algae is able to accelerate the photodegradation rate of contaminants under sunlight irradiation, and this process can be attributed to algal substances, namely, intracellular organic matter (IOM) and extracellular organic matter (EOM). This study aimed to investigate the efficiencies and mechanisms of the photodegradation of three pharmaceuticals - acetaminophen (ACE), codeine (COD) and cephradine (CFD) - in the presence of Chlorella vulgaris and its algal substances. The result shows that a much higher photodegradation rate of acetaminophen was obtained in the presence of IOM (kobs = 0.250 hr-1) than in the presence of EOM (kobs = 0.060 hr-1). The photodegradation mechanisms of acetaminophen were demonstrated and verified by scavenger experiments and probe tests. The major reactive species for acetaminophen photodegradation was triplet-state IOM (3IOM∗), which contributed 93.52% of the photodegradation, while ⋅OH was the secondary contributor (5.60%), with 1O2 contributing the least (0.88%). Chlorella vulgaris also effectively enhanced the photodegradation of codeine and cephradine. However, the photodegradation behaviors of codeine and cephradine in the presence of algal substances were different from those of acetaminophen, indicating that the photodegradation mechanisms might depend on the type of compound. This study not only demonstrates the effectiveness of algal substances in the photodegradation of acetaminophen, codeine and cephradine under sunlight irradiation but also provides a comprehensive study on the photodegradation mechanisms of acetaminophen in the presence of algal substances.


Assuntos
Chlorella vulgaris , Acetaminofen , Fotólise
4.
J Hazard Mater ; 391: 122247, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062347

RESUMO

Perfluorooctanoic acid (PFOA) have been widely studied due to their persistence, bioaccumulation and possible toxic effects. In this work, we investigated a photoelectrochemical (PEC) system consisting of a graphene oxide-titanium dioxide (GOP25) anode coated on fluorine-doped tin oxide (FTO) glass for removal of PFOA in an aquatic environment. The GOP25/FTO anode was fabricated and well characterized. Nearly complete decomposition of 0.5 mg/L PFOA was achieved after 4 h of PEC treatment with an initial pH of 5.3 and a current density of 16.7 mA cm-2. The presence of graphene oxide (GO) on the TiO2 anode could enhance its electrochemical performance, thereby leading to increased decomposition efficiency. A total of 18 PFOA transformation products, including short-chain perfluoroalkyl acids, are reported in this work, and 13 products were observed for the first time. Four possible routes of PFOA decomposition, namely, decarboxylation followed by oxidation, defluorination, hydroxylation and Cl atom substitution, were determined. The presence of chlorinated byproducts in the system indicated that reactive chlorine species contributed to PFOA degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA