Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978228

RESUMO

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

2.
Clin Chim Acta ; 560: 119718, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718852

RESUMO

Bladder cancer (BC) is ranked as the ninth most common malignancy worldwide, with approximately 570,000 new cases reported annually and over 200,000 deaths. Cystoscopy remains the gold standard for the diagnosis of BC, however, its invasiveness, cost, and discomfort have driven the demand for the development of non-invasive, cost-effective alternatives. Nuclear matrix protein 22 (NMP22) is a promising non-invasive diagnostic tool, having received FDA approval. Traditional methods for detecting NMP22 require a laboratory environment equipped with specialized equipment and trained personnel, thus, the development of NMP22 detection devices holds substantial potential for application. In this review, we evaluate the NMP22 sensors developed over the past decade, including electrochemical, colorimetric, and fluorescence biosensors. These sensors have enhanced detection sensitivity and overcome the limitations of existing diagnostic methods. However, many emerging devices exhibit deficiencies that limit their potential clinical use, therefore, we propose how sensor design can be optimized to enhance the likelihood of clinical translation and discuss the future applications of NMP22 as a legacy biomarker, providing insights for the design of new sensors.


Assuntos
Proteínas Nucleares , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Proteínas Nucleares/análise , Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos
3.
Curr Cancer Drug Targets ; 24(7): 701-719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265406

RESUMO

Bladder cancer (BC) is a common malignant tumor of the urinary system. While current approaches involving adjuvant chemotherapy, radiotherapy, and immunotherapy have shown significant progress in BC treatment, challenges, such as recurrence and drug resistance, persist, especially in the case of muscle-invasive bladder cancer (MIBC). It is mainly due to the lack of pre-existing immune response cells in the tumor immune microenvironment. Micro-environmental changes (such as hypoxia and under-nutrition) can cause the aggregation of unfolded and misfolded proteins in the lumen, which induces endoplasmic reticulum (ER) stress. ER stress and its downstream signaling pathways are closely related to immunogenicity and tumor drug resistance. ER stress plays a pivotal role in a spectrum of processes within immune cells and the progression of BC cells, encompassing cell proliferation, autophagy, apoptosis, and resistance to therapies. Recent studies have increasingly recognized the potential of natural compounds to exhibit anti-BC properties through ER stress induction. Still, the efficacy of these natural compounds remains less than that of immune checkpoint inhibitors (ICIs). Currently, the ER stress-mediated immunogenic cell death (ICD) pathway is more encouraging, which can enhance ICI responses by mediating immune stemness. This article provides an overview of the recent developments in understanding how ER stress influences tumor immunity and its implications for BC. Targeting this pathway may soon emerge as a compelling therapeutic strategy for BC.


Assuntos
Estresse do Retículo Endoplasmático , Transdução de Sinais , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/terapia , Microambiente Tumoral/imunologia , Animais , Imunoterapia/métodos
4.
J Pharm Biomed Anal ; 236: 115694, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37696190

RESUMO

BACKGROUND: Bladder cancer (BC) caused by Human papillomavirus (HPV) infection remains a complex public health problem in developing countries. Although the HPV vaccine effectively prevents HPV infection, it does not benefit patients with BC who already have HPV. METHODS: Firstly, the differential genes of HPV-related BC patients were screened by transcriptomics, and then the prognostic and clinical characteristics of the differential genes were analyzed to screen out the valuable protein signatures. Furthermore, the compound components and targets of Astragali Radix (AR) were analyzed by network pharmacology, and the intersection targets of drug components and HPV_BC were screened out for pathway analysis. In addition, the binding ability of the compound to the Astragali-HPV_BC target was verified by molecular docking and virtual simulation. Finally, to identify potential targets in BC patients through urine proteomics and in vitro experiments. RESULTS: Eleven HPV_BC-related protein signatures were screened out, among which high expression of EGFR, CTNNB1, MYC, GSTM1, MMP9, CXCR4, NOTCH1, JUN, CXCL12, and KRT14 had a poor prognosis, while low expression of CASP3 had a poor prognosis. In the analysis of clinical characteristics, it was found that high-risk scores, EGFR, MMP9, CXCR4, JUN, and CXCL12 tended to have higher T stage, pathological stage, and grade. Pharmacological and molecular docking analysis identified a natural component of AR (Quercetin) and it corresponding core targets (EGFR). The OB of the natural component was 46.43, and the DL was 0.28, respectively. In addition, EGFR-Quercetin has high affinity. Urine proteomics and RT-PCR showed that EGFR was expressed explicitly in BC patients. Mechanism analysis revealed that AR component targets might affect HPV_BC patients through Proteoglycans in the cancer pathway. CONCLUSION: AR can target EGFR through its active component (Quercetin), and has a therapeutic effect on HPV_BC patients.


Assuntos
Astrágalo , Medicamentos de Ervas Chinesas , Infecções por Papillomavirus , Neoplasias da Bexiga Urinária , Humanos , Metaloproteinase 9 da Matriz , Farmacologia em Rede , Simulação de Acoplamento Molecular , Infecções por Papillomavirus/tratamento farmacológico , Proteômica , Quercetina , Receptores ErbB/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
5.
Int Immunopharmacol ; 124(Pt A): 110834, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625368

RESUMO

Neutrophils are a major subset of leukocytes in human circulating blood. In some circumstances, neutrophils release neutrophil extracellular traps (NETs). lnitially, NETs were considered to have a strong antibacterial capacity. However, currently, NETs have been shown to have a pivotal impact on various diseases. Different stimulators induce the production of different types of NETs, and their biological functions and modes of clearance do not appear to be the same. In this review, we will discuss several important issues related to NETs in order to better understand the relationship between NETs and diseases, as well as how to utilize the characteristics of NETs for disease treatment.

7.
Front Immunol ; 14: 1188520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441065

RESUMO

Mounting evidence suggests that the gut microbiota plays a crucial role in the development and treatment of various cancers. Recent research on the urinary microbiota challenges the long-standing belief that urine is sterile, as urinary microbiota has been implicated in the development of bladder and prostate cancers, similar to the role of gut microbiota in cancer development. Although the precise involvement of microbiota in the proliferation and differentiation of renal cell carcinoma (RCC) remains unclear, dysbiosis is considered one possible mechanism by which microbiota may contribute to RCC development and treatment. This review summarizes potential mechanisms by which gut microbiota may contribute to the development of RCC, and provides evidence for the involvement of urinary microbiota in RCC. We also explore the role of gut microbiota in RCC treatment and propose that the composition of gut microbiota could serve as a predictive marker for the potential efficacy of immune checkpoint inhibitors (ICIs) in RCC patients. Additionally, evidence suggests that modulating the abundance and distribution of microbiota can enhance the therapeutic effects of drugs, suggesting that microbiota may serve as a promising adjuvant therapy for RCC. Overall, we believe that further investigation into the gut and urinary microbiome of RCC patients could yield valuable insights and strategies for the prevention and personalized treatment of RCC.


Assuntos
Carcinoma de Células Renais , Microbioma Gastrointestinal , Neoplasias Renais , Microbiota , Neoplasias da Próstata , Masculino , Humanos , Carcinoma de Células Renais/etiologia , Carcinoma de Células Renais/terapia , Neoplasias Renais/etiologia , Neoplasias Renais/terapia , Neoplasias Renais/patologia
11.
Kaohsiung J Med Sci ; 38(10): 925-932, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36056704

RESUMO

Renal epithelioid angiomyolipoma (EAML) is a unique subtype of angiomyolipoma that contains a variety of cytoplasmic-rich, eosinophilic cytoplasm epithelioid cells in addition to mature adipocytes, hyaline thick-walled vessels, and smooth muscle-like spindle cells. In recent years, increasing evidence has shown that EAML is a potentially malignant tumor. Due to the lack of typical clinical manifestations and imaging features, it is difficult to diagnose before surgery, and the diagnosis mainly depends on postoperative histopathological examination. With the advancement of pathological diagnostic techniques, more EAML cases has been discovered, but clinicians still lack a comprehensive understanding of EAML. This review comprehensively describes some pathological and clinical features of EAML, with special attention to the pathogenesis and treatment of malignant EAML in order to assist with clinical diagnosis and treatment.


Assuntos
Angiomiolipoma , Neoplasias Renais , Angiomiolipoma/diagnóstico por imagem , Angiomiolipoma/cirurgia , Células Epitelioides/patologia , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Neoplasias Renais/terapia
12.
Front Oncol ; 12: 809847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957868

RESUMO

Background: Solute carrier family 17 member 9 (SLC17A9) encodes a member of a family of transmembrane proteins that are involved in the transport of small molecules. SLC17A9 is involved in the occurrence and development of various cancers, but its biological role in liver hepatocellular carcinoma (LIHC) is unclear. Methods: The expression level of SLC17A9 was assessed using The Cancer Genome Atlas (TCGA) database and immunohistochemistry of tumor tissues and adjacent normal liver tissues. The receiver operating characteristic (ROC) and R software package performed diagnosis and prognosis. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes functional enrichment and co-expression of SLC17A9, gene-gene interaction (GGI), and protein-protein interaction (PPI) networks were performed using R, GeneMANIA, and STRING. Western blot, real-time quantitative PCR (RT-qPCR), immunofluorescence, colony formation, wound scratch assay, ATP production assays, and high connotation were applied to determine the effect of SLC17A9 knockdown on HEPG2 (hepatocellular liver carcinoma) cells. TIMER, GEPIA, and TCGA analyzed the relationship between SLC17A9 expression and immune cells, m6A modification, and ferroptosis. Results: SLC17A9 expression in LIHC tissues was higher than in normal liver tissues (p < 0.001), and SLC17A9 was related to sex, DSS (disease-specific survival), and PFI (progression-free interval) (p = 0.015, 0.006, and 0.023). SLC17A9 expression has diagnostic (AUC: 0.812; CI: 0.770-0.854) and prognostic potential (p = 0.015) in LIHC. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) functional enrichment analysis showed that SLC17A9 was closely related to neuronal cell body, presynapse, axonogenesis, PI3K/Akt signaling pathway. GGI showed that SLC17A9 was closely related to MYO5A. PPI showed that SLC17A9 was closely related to SLC18A3. SLC17A9 silencing inhibited HepG2 cells proliferation, migration, colony formation, and reduced their ATP level. SLC17A9 expression level was related to immune cells: B cells (r = 0.094, P = 8.06E-02), CD4+ T cells (r = 0.184, P = 5.95E-04), and macrophages (r = 0.137, P = 1.15E-02); m6A modification: HNRNPC (r = 0.220, p < 0.001), METTL3 (r = 0.180, p < 0.001), and WTAP (r = 0.130, p = 0.009); and ferroptosis: HSPA5 (r = 0.240, p < 0.001), SLC7A11 (r = 0.180, p < 0.001), and FANCD2 (r = 0.280, p < 0.001). Conclusion: Our data show that SLC17A9 may influence LIHC progression. SLC17A9 expression correlates with tumor immune infiltration, m6A modification, and ferroptosis in LIHC and may have diagnostic and prognostic value in LIHC.

13.
Front Cell Dev Biol ; 10: 853596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399515

RESUMO

Background: Overexpression of solute carrier family 2 member 1 (SLC2A1) promotes glycolysis and proliferation and migration of various tumors. However, there are few comprehensive studies on SLC2A1 in colorectal cancer (CRC). Methods: Oncomine, The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases were used to analyze the expression of SLC2A1 in pan-cancer and CRC and analyzed the correlation between SLC2A1 expression and clinical characteristics of TCGA CRC samples. The expression level of SLC2A1 in CRC was certified by cell experiments and immunohistochemical staining analysis. The Genome Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) analyses of SLC2A1 relative genes were completed by bioinformatics analysis. The correlation between SLC2A1 expression level and CRC immune infiltration cell was analyzed by Tumor IMmune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), and TCGA database. The correlation between SLC2A1 expression level and ferroptosis and m6A modification of CRC was analyzed by utilizing TCGA and GEO cohort. Finally, the possible competing endogenous RNA (ceRNA) networks involved in SLC2A1 in CRC are predicted and constructed through various databases. Results: SLC2A1 is highly expressed not only in CRC but also in many other tumors. ROC curve indicated that SLC2A1 had high predictive accuracy for the outcomes of tumor. The SLC2A1 expression in CRC was closely correlated with tumor stage and progression free interval (PFI). GO, KEGG, and GSEA analysis indicated that SLC2A1 relative genes were involved in multiple biological functions. The analysis of TIMER, GEPIA, and TCGA database indicated that the SLC2A1 mRNA expression was mainly positively associated with neutrophils. By the analysis of the TCGA and GEO cohort, we identified that the expression of SLC2A1 is closely associated to an m6A modification relative gene Insulin Like Growth Factor 2 MRNA Binding Protein 3 (IGF2BP3) and a ferroptosis relative gene Glutathione Peroxidase 4 (GPX4). Conclusion: SLC2A1 can be used as a biomarker of CRC, which is associated to immune infiltration, m6A modification, ferroptosis, and ceRNA regulatory network of CRC.

14.
Angew Chem Int Ed Engl ; 61(25): e202202912, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384234

RESUMO

Covalent organic frameworks (COFs) featuring permanent porosity, designable topologies, and tailorable functionalities have attracted great interest in the past two decades. Developing efficient modular approaches to rationally constructing COFs from a set of molecules via covalent linking has been long pursued. Herein, we report a facile one-pot strategy to prepare COFs via an irreversible Suzuki coupling reaction followed by a reversible Schiff's base reaction without the need for intermediate isolation. Gram-scale ordered frameworks with kgm topology and rich porosities can be obtained by using diamino-aryl halide and dialdehyde aryl-borate compounds as monomers. The resultant microporous CR-COFs were used for efficient C2 H4 /C3 H6 separation. This strategy reduces the waste generated and efforts consumed by stepwise reactions and relative purification processes, making the large-scale syntheses of stable COFs feasible. Moreover, it offers a novel modular approach to designing COF materials.

15.
J Cancer ; 12(19): 5838-5847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475997

RESUMO

Background: We sought to investigate whether the expression of the gene EIF2S2 is related to 18F-FDG PET/CT metabolic parameters in patients with colorectal cancer (CRC). Materials and methods: The expression of EIF2S2 in CRC and its relationship with clinicopathological features were obtained through the ONCOMINE, UALCAN and GEPIA databases. EIF2S2 and GLUT1 expression were examined by immunohistochemistry in 42 CRC patients undergoing preoperative PET-CT examination. Spearman correlation analysis was used to assess the relationship between EIF2S2 and GLUT1 levels and clinical parameters. Correlation analysis between EIF2S2 and Reactome-Glycolysis signatures was performed using GEPIA2. We describe the effect of EIF2S2 knockdown on lactate production and the mRNA levels of glycolysis-related genes in human colon cancer SW480 cells. Results: Immunohistochemistry revealed an upregulation of EIF2S2 protein expression in tumor tissues of colorectal cancer patients, which is consistent with the significant upregulation of EIF2S2 transcript levels in the database. These colorectal cancer patients included 24 cases of colon cancer and 18 cases of rectal cancer, ranging in age from 31 to 78 years. The transcription was significantly related to histological subtypes and TP53 mutations (P <0.05). The value of SUVmax in CRC significantly correlated with the expression of EIF2S2 (rho = 0.462, P <0.01). Although SUVmax and SUVmean was not correlate with the expression of GLUT1 (P <0.05), a significant correlation was observed between the expression of GLUT1 and the volumetric PET parameters, such as MTV and TLG (P < 0.01). GLUT1 expression in CRC was positively correlated with EIF2S2 status (rho = 0.470, P <0.01). In SW480 cells, RNAi-mediated depletion of EIF2S2 inhibited lactic acid production (P <0.05) and SLC2A1, SLC2A3, SLC2A10, HK2, PKM2, LDHA mRNA level (P <0.01). Conclusions: Primary CRC FDG uptake is strongly associated with the overexpression of EIF2S2, and EIF2S2 may promote glycolysis in CRC by mediating GLUT1.

16.
Front Oncol ; 11: 665388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123828

RESUMO

BACKGROUND: Glucose transporter 1 (GLUT1) is encoded by the solute carrier family 2A1 (SLC2A1) gene and is one of the glucose transporters with the greatest affinity for glucose. Abnormal expression of GLUT1 is associated with a variety of cancers. However, the biological role of GLUT1 in esophageal carcinoma (ESCA) remains to be determined. METHODS: We analyzed the expression of GLUT1 in pan-cancer and ESCA as well as clinicopathological analysis through multiple databases. Use R and STRING to perform GO/KEGG function enrichment and PPI analysis for GLUT1 co-expression. TIMER and CIBERSORT were used to analyze the relationship between GLUT1 expression and immune infiltration in ESCA. The TCGA ESCA cohort was used to analyze the relationship between GLUT1 expression and m6A modification in ESCA, and to construct a regulatory network in line with the ceRNA hypothesis. RESULTS: GLUT1 is highly expressed in a variety of tumors including ESCA, and is closely related to histological types and histological grade. GO/KEGG functional enrichment analysis revealed that GLUT1 is closely related to structural constituent of cytoskeleton, intermediate filament binding, cell-cell adheres junction, epidermis development, and P53 signaling pathway. PPI shows that GLUT1 is closely related to TP53, GIPC1 and INS, and these three proteins all play an important role in tumor proliferation. CIBERSORT analysis showed that GLUT1 expression is related to the infiltration of multiple immune cells. When GLUT1 is highly expressed, the number of memory B cells decreases. ESCA cohort analysis found that GLUT1 expression was related to 7 m6A modifier genes. Six possible crRNA networks in ESCA were constructed by correlation analysis, and all these ceRNA networks contained GLUT1. CONCLUSION: GLUT1 can be used as a biomarker for the diagnosis and treatment of ESCA, and is related to tumor immune infiltration, m6A modification and ceRNA network.

17.
Eur J Nucl Med Mol Imaging ; 48(3): 904-912, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32856112

RESUMO

PURPOSE: This study investigated the correlation of nucleophosmin 1 (NPM1) expression with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computerised tomography scan (PET/CT)-related parameters and compared the diagnostic value of NPM1 with that of the positive biomarker TTF1 in lung adenocarcinoma patients. METHODS: Forty-six lung adenocarcinoma patients who underwent 18F-FDG PET/CT before pulmonary surgery were retrospectively analysed. Metabolic parameters including SUVmax, SUVmean, metabolic tumour volume (MTV) and total lesion glycolysis (TLG) were calculated from 18F-FDG PET imaging data. The expression levels of NPM1 and TTF1 were assessed using The Cancer Genome Atlas (TCGA) database and immunohistochemistry of tumour tissues and adjacent normal lung tissues. We examined the association between the frequency of NPM1 and TTF1 expression and the metabolic parameters. RESULTS: Lung adenocarcinoma samples expressed higher levels of NPM1 than adjacent normal lung epithelial tissues. NPM1 showed higher specificity and sensitivity for lung adenocarcinoma compared with TTF1 (p < 0.001). SUVmax, SUVmean and TLG correlated with NPM1 expression (p < 0.001). MTV was inversely correlated with TTF1 (p < 0.01). SUVmax was the primary predictor of NPM1 expression by lung adenocarcinoma (p < 0.01). A cutoff value for the SUVmax of 3.93 allowed 90.9% sensitivity and 84.6% specificity for predicting NPM1 overexpression in lung adenocarcinoma. CONCLUSION: NPM1 overexpression correlated with 18F-FDG PET/CT metabolic parameters and improved diagnostic accuracy in lung adenocarcinoma. SUVmax on 18F-FDG PET/CT may estimate NPM1 expression for targeted therapy of lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/genética , Fluordesoxiglucose F18 , Glicólise , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Proteínas Nucleares , Nucleofosmina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Prognóstico , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Carga Tumoral
18.
J Cancer ; 11(16): 4851-4860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626532

RESUMO

Background: To investigate the expression of methyltransferase 3 (METTL3) and its relationship with 18F-FDG uptake in patients with esophageal carcinoma (ESCA). Materials and methods: This study analyzed the expression of METTL3 in ESCA and its relationship with clinicopathological features by The Cancer Genome Atlas (TCGA) database. Immunohistochemical staining was performed on 57 tumor tissues of ESCA patients who underwent PET/CT scan before surgery to evaluate the expression of METTL3, glucose transporter 1 (GLUT1), and hexokinase 2 (HK2) in tumor tissues and peritumoral tissues. Analyze the relationship between SUVmax with METTL3, HK2, and GLUT1 expression. Results: The expression of METTL3, GLUT1, and HK2 was significantly increased in ESCA tissues compared with normal tissues (p < 0.001). The expression of METTL3 was correlated with tumor size and histological differentiation (p < 0.05), and there was no significant difference between age, sex, pathological types, tumor staging, or lymph node metastasis (p > 0.05). The SUVmax was significantly higher in tumors with high METTL3 expression (17.822±6.249) compared to low METTL3 expression (9.573±5.082) (p < 0.001). There was a positive correlation between the SUVmax and METTL3 expression in ESCA (r2 = 0.647, p < 0.001). Multivariate analysis confirmed the association between SUVmax and METTL3 expression (p < 0.05). GLUT1 and HK2 expression in ESCA was positively correlated with 18F-FDG uptake and METTL3 status (p < 0.001). Conclusions: The high expression of METTL3 is related to the high SUVmax in ESCA, and METTL3 may increase 18F-FDG uptake by regulating GLUT1 and HK2.

19.
Front Oncol ; 10: 606735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33604289

RESUMO

BACKGROUND: E2F transcription factors (E2Fs) are a group of genes encoding a family of transcription factors in higher eukaryotes. They are involved in a variety of cellular functions and are up-regulated in many tissues and organs. However, the expression level, genetic variation, molecular mechanism, and biological function of different E2Fs in PAAD and its relationship with the prognosis and immune infiltration in patients with PAAD have not been fully elucidated. METHODS: In this study, we investigated the mRNA expression level, genetic variation, prognostic value and gene-gene interaction network of E2Fs in PAAD using the Oncomine, GEPIA, Kaplan Meier plotter, cBioPortal, GeneMANIA, STRING and Metascape database. Then, the relationship between E2Fs expression and tumor immune invasion was studied by using the TIMER database. Finally, we confirmed the expression of E2Fs in PAAD by IHC. RESULTS: The transcription levels of E2F1/3/5/8 are obviously up-regulated in PAAD and the high expression of E2F2/3/6/8 was apparently associated with the tumor stage of patients with PAAD. The abnormal expression of E2F1/2/3/4/5/7/8 in PAAD patients is related to the clinical outcome of PAAD patients. We also found that PAAD tissues have higher expression levels of E2F1/3/5/8 compared with adjacent normal tissues. The function of E2Fs and its neighboring genes is mainly related to the transcription initiation of the RNA polymerase II promoter. The functions of E2Fs and its neighboring proteins are mainly related to cell cycle, virus carcinogenesis, FoxO signaling pathway, TGF-ß signaling pathway, transcriptional disorders in cancer and Wnt signaling pathway. We also found that the expression of E2Fs was significantly correlated with immune infiltrates, including B cells, CD8+ T cells, CD4+T cells, neutrophils, macrophages, and dendritic cells. CONCLUSIONS: Our study may provide new insights into the choice of immunotherapy targets and prognostic biomarkers in PAAD patients.

20.
Org Biomol Chem ; 15(48): 10221-10229, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29177319

RESUMO

Three polyether-tethered berberine dimers (1a-c) were studied for their binding affinity, selectivity and thermal stabilization towards human telomeric dimeric quadruplex DNA (G2T1). Compound 1a with the shortest polyether linker showed the highest affinity (Ka > 108 M-1) and 76-508-fold higher selectivity for mixed-type G2T1 over antiparallel G2T1 and three monomeric G-quadruplexes, which are human telomeric monomeric quadruplex G1, c-kit 1 and c-kit 2. Compound 1a induced the formation of quadruplex structures and showed higher thermal stabilization for mixed-type G2T1 than for anti-parallel G2T1, G1 and ds DNA. Spectroscopic studies suggest that compound 1a could bind to mixed-type G2T1 via end-stacking and external binding modes. These results suggest that the polyether linkers in these compounds play an important role in regulating the binding affinity and selectivity towards mixed-type G2T1 and that compound 1a could target mixed-type G2T1 at other genome regions with antiparallel G2T1 and monomeric G-quadruplexes. These results may provide useful guidance for the rational design of selective multimeric G-quadruplex binders and potential anticancer agents.


Assuntos
Berberina/farmacologia , Quadruplex G/efeitos dos fármacos , Berberina/síntese química , Berberina/química , Dimerização , Humanos , Estrutura Molecular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA