Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569444

RESUMO

Increasing evidence suggests that exosomes are involved in retinal cell degeneration, including their insufficient release; hence, they have become important indicators of retinopathies. The exosomal microRNA (miRNA), in particular, play important roles in regulating ocular and retinal cell functions, including photoreceptor maturation, maintenance, and visual function. Here, we generated retinal organoids (ROs) from human induced pluripotent stem cells that differentiated in a conditioned medium for 60 days, after which exosomes were extracted from ROs (Exo-ROs). Subsequently, we intravitreally injected the Exo-RO solution into the eyes of the Royal College of Surgeons (RCS) rats. Intravitreal Exo-RO administration reduced photoreceptor apoptosis, prevented outer nuclear layer thinning, and preserved visual function in RCS rats. RNA sequencing and miRNA profiling showed that exosomal miRNAs are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, the expression of MAPK-related genes and proteins was significantly decreased in the Exo-RO-treated group. These results suggest that Exo-ROs may be a potentially novel strategy for delaying retinal degeneration by targeting the MAPK signaling pathway.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Degeneração Retiniana , Cirurgiões , Ratos , Humanos , Animais , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Exossomos/metabolismo , Espécies Reativas de Oxigênio , Células-Tronco Pluripotentes Induzidas/metabolismo
3.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097293

RESUMO

The formation of germinal centers (GCs) is crucial for humoral immunity and vaccine efficacy. Constant stimulation through microbiota drives the formation of constitutive GCs in Peyer's patches (PPs), which generate B cells that produce antibodies against gut antigens derived from commensal bacteria and infectious pathogens. However, the molecular mechanism that regulates this persistent process is poorly understood. We report that Ewing Sarcoma Breakpoint Region 1 (EWSR1) is a brake to constitutive GC generation and immunoglobulin G (IgG) production in PPs, vaccination-induced GC formation, and IgG responses. Mechanistically, EWSR1 suppresses Bcl6 upregulation after antigen encounter, thereby negatively regulating induced GC B cell generation and IgG production. We further showed that tumor necrosis factor receptor-associated factor (TRAF) 3 serves as a negative regulator of EWSR1. These results established that the TRAF3-EWSR1 signaling axis acts as a checkpoint for Bcl6 expression and GC responses, indicating that this axis is a therapeutic target to tune GC responses and humoral immunity in infectious diseases.


Assuntos
Nódulos Linfáticos Agregados , Fator 3 Associado a Receptor de TNF , Antígenos/metabolismo , Linfócitos B , Centro Germinativo , Imunoglobulina G/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Humanos
4.
Nano Lett ; 23(11): 5391-5398, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-36971404

RESUMO

Since thermometry of human skin is critical information that provides important aspects of human health and physiology, accurate and continuous temperature measurement is required for the observation of physical abnormalities. However, conventional thermometers are uncomfortable because of their bulky and heavy features. In this work, we fabricated a thin, stretchable array-type temperature sensor using graphene-based materials. Furthermore, we controlled the degree of graphene oxide reduction and enhanced the temperature sensitivity. The sensor exhibited an excellent sensitivity of 2.085% °C-1. The overall device was designed in a wavy meander shape to provide stretchability for the device so that precise detection of skin temperature could be performed. Furthermore, polyimide film was coated to secure the chemical and mechanical stabilities of the device. The array-type sensor enabled spatial heat mapping with high resolution. Finally, we introduced some practical applications of skin temperature sensing, suggesting the possibility of skin thermography and healthcare monitoring.


Assuntos
Grafite , Temperatura Cutânea , Humanos , Temperatura , Termografia
5.
Nutrients ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678190

RESUMO

Flavanones in Citrus unshiu peel (CUP) have been used as therapeutic agents to reduce intestinal inflammation; however, the anti-inflammatory effects of their biometabolites remain ambiguous. Here, we identified aglycone-type flavanones, such as hesperetin and naringenin, which were more abundant in the bioconversion of the CUP than in the ethanol extracts of the CUP. We found that the bioconversion of the CUP induced the canonical nuclear factor-κB pathway via degradation of IκB in Caco-2 cells. To check the immune suppressive capacity of the aglycones of the CUP in vivo, we orally administered the bioconversion of the CUP (500 mg/kg) to mice for two weeks prior to the 3% dextran sulfate sodium treatment. The CUP-pretreated group showed improved body weight loss, colon length shortage, and intestinal inflammation than the control mice. We also found a significant decrease in the population of lamina propria Th17 cells in the CUP-pretreated group following dextran sodium sulfate (DSS) treatment and an increase in mRNA levels of occludin in CUP-treated Caco-2 cells. Pyrosequencing analysis revealed a decreased abundance of Alistipes putredinis and an increased abundance of Muribaculum intestinale in the feces of the CUP-pretreated mice compared to those of the control mice. Overall, these findings suggest that the pre-administration of CUP biometabolites may inhibit the development of murine colitis by modulating intestinal permeability and the gut microbiome.


Assuntos
Citrus , Colite , Flavanonas , Humanos , Camundongos , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/metabolismo , Inflamação/metabolismo , Bactérias , Flavanonas/metabolismo , Permeabilidade , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
Front Cell Dev Biol ; 10: 865056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646889

RESUMO

A mechanosensitive ion channel, Piezo1 induces non-selective cation flux in response to various mechanical stresses. However, the biological interpretation and underlying mechanisms of cells resulting from Piezo1 activation remain elusive. This study elucidates Piezo1-mediated Ca2+ influx driven by channel activation and cellular behavior using novel Förster Resonance Energy Transfer (FRET)-based biosensors and single-cell imaging analysis. Results reveal that extracellular Ca2+ influx via Piezo1 requires intact caveolin, cholesterol, and cytoskeletal support. Increased cytoplasmic Ca2+ levels enhance PKA, ERK, Rac1, and ROCK activity, which have the potential to promote cancer cell survival and migration. Furthermore, we demonstrate that Piezo1-mediated Ca2+ influx upregulates membrane ruffling, a characteristic feature of cancer cell metastasis, using spatiotemporal image correlation spectroscopy. Thus, our findings provide new insights into the function of Piezo1, suggesting that Piezo1 plays a significant role in the behavior of cancer cells.

7.
Biomed Pharmacother ; 153: 113283, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35717781

RESUMO

Vascular calcification (VC) is induced by a decrease in sirtuin 3 (SIRT3) and superoxide dismutase (SOD)2 and increases mitochondrial reactive oxygen species (mtROS), eventually leading to mitochondrial dysfunction and phenotype alterations in vascular smooth muscle cells (VSMCs) into osteoblast-like cells in hypertension. Ecklonia cava extract (ECE) is known to increase peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) and SOD2. In this study, we evaluated the effect of ECE on decreasing VC by increasing PGC-1α which increased SOD2 activity and decreased mtROS in an in vitro VSMC model of treating serums from Wistar Kyoto (WKY), spontaneous hypertensive rats (SHRs), and ECE-treated SHRs. Furthermore, the decreasing effect of ECE on VC was evaluated with an in vivo SHR model. PGC-1α expression, SIRT3 expression, and SOD2 activity were decreased by the serum from the SHRs and increased by the serum from the ECE-treated SHRs in the VSMCs. PGC-1α silencing eliminated those increases. mtROS generation and mitochondrial DNA (mtDNA) damage increased in the SHRs but decreased with ECE. Mitochondrial fission increased in the SHRs but decreased by ECE. Mitochondrial fusion, mitophagy, and mitochondrial biogenesis were decreased in the SHRs but increased by ECE. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and calcium deposition in the medial layer of the aorta increased in the SHRs but decreased with ECE. Therefore, ECE decreases VC via the upregulation of PGC-1α and SIRT3, which increases SOD2 activity. Activated SOD2 decreases mtDNA damage and mtROS generation, which sequentially decreases NADPH oxidase activity and changes the mitochondrial dynamics, thereby decreasing VC.


Assuntos
Hipertensão , Sirtuína 3 , Calcificação Vascular , Animais , DNA Mitocondrial/genética , Hipertensão/tratamento farmacológico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/prevenção & controle
8.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328415

RESUMO

It is well known that skin aging is related to the destruction of collagen and elastin fibers by metalloproteinases (MMPs). Aged fibroblasts have a decreased ability to synthesize collagen and elastin. Nuclear factor erythroid 2-related factor 2 (NRF2) involves glyoxalase (GLO) activation, which inhibits the production of advanced glycated end products (AGE) and the expression of its receptor (RAGE). RAGE increases nuclear transcription factor-kappa B (NF-κB), which upregulates MMPs and decreases skin elasticity. NRF2 also decreases M1 macrophages, which secrete tumor necrosis factor-alpha (TNF-α), thereby decreasing AGE production. It is well known that radiofrequency (RF) decreases skin elasticity by increasing collagen synthesis. We evaluated whether RF increases skin elasticity via NRF2/GLO and whether they decrease AGE and RAGE expression in aged animal skin. We also compared the effects of RF based on the modes (monopolar or bipolar) or the combination used. In aged skin, NRF2, GLO-1, and M2 macrophage expression was decreased, and their expression increased when RF was applied. M1 and TNF-α demonstrated increased expression in the aged skin and decreased expression after RF application. AGE accumulation and RAGE, NF-κB, and MMP2/3/9 expression were increased in the aged skin, and they were decreased by RF. The papillary and reticular fibroblast markers showed decreased expression in young skin and increased expression in aged skin. The densities of collagen and elastin fiber in the aged skin were low, and they were increased by RF. In conclusion, RF leads to increased collagen and elastin fibers by increasing NRF2/GLO-1 and modulating M1/M2 polarization, which leads to decreased AGE and RAGE and, consequently, decreased NF-κB, which eventually slows collagen and elastin destruction. RF also leads to increased collagen and elastin fiber synthesis by increasing papillary and reticular fibroblast expression.


Assuntos
Lactoilglutationa Liase , Envelhecimento da Pele , Animais , Colágeno/metabolismo , Elasticidade , Elastina/metabolismo , Lactoilglutationa Liase/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209068

RESUMO

It is well-known that increased oxidative stress caused by ultraviolet B (UV-B) radiation induces melanogenesis and activates metalloproteinases (MMPs), which degrade collagen and elastin fibers, leading to decreased skin elasticity. Various antioxidant agents, such as vitamin C and niacinamide, have been evaluated for use as treatments for photoaging or skin pigmentation. In this study, we evaluated the ability of a topical liquid formula of polydeoxyribonucleotide (PDRN), vitamin C, and niacinamide (PVN) delivered via a microneedling therapy system (MTS) to attenuate photoaging and pigmentation by increasing nuclear factor erythroid 2-like 2 (NRF2)/heme oxygenase-1 (HO-1) and decreasing MMP expression in a UV-B-radiated animal model. The effects of the PVN were compared with those of individual PDRN and hydroquinone (HQ) compounds. The expression of NRF2/HO-1 significantly increased in response to HQ, PDRN, and PVN in UV-B-radiated animal skin. The activity of nicotinamide adenine dinucleotide phosphate hydrogen oxidase decreased in response to HQ, PDRN, and PVN, and the superoxide dismutase activity increased. The expression of tumor protein p53 and microphthalmia-associated transcription factor and tyrosinase activity decreased in response to HQ, PDRN, and PVN, and this decrease was accompanied by decreased melanin content in the skin. The expression of nuclear factor kappa-light-chain enhancer of activated B cells and MMP2/3/9 decreased in response to HQ, PDRN, and PVN in UV-B-radiated skin. However, the expression of collagen type I α1 chain and the amount of collagen fibers that were evaluated by Masson's trichrome staining increased in response to HQ, PDRN, and PVN. The contents of elastin fibers, fibrillin 1/2 and fibulin 5 increased in response to HQ, PDRN, and PVN. In conclusion, PVN delivered via MTS led to decreased melanogenesis and destruction of collagen and elastin fibers by MMPs, and, thus, PVN decreased skin pigmentation and increased skin elasticity.


Assuntos
Ácido Ascórbico/química , Fator 2 Relacionado a NF-E2/metabolismo , Niacinamida/administração & dosagem , Polidesoxirribonucleotídeos/administração & dosagem , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Biomarcadores , Elasticidade , Expressão Gênica , Imuno-Histoquímica , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Melaninas/biossíntese , Fator 2 Relacionado a NF-E2/genética , Raios Ultravioleta
10.
Cell Death Discov ; 8(1): 56, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136019

RESUMO

Retinal organoids derived from human-induced pluripotent stem cells (hiPSC) are powerful tools for studying retinal development as they model spatial and temporal differentiation of retinal cell types. Vertebrate retinal development involves a delicate and coordinated process of retinal progenitor cell (RPC) differentiation, and the mammalian target of rapamycin complex 1 (mTORC1) has been reported to play a significant role in this complex process. Herein, using hiPSC-derived retinal organoids, we identify the time-dependent role of mTORC1 in retinal development, specifically in retinal ganglion cell (RGC) differentiation and the retinal lamination process, during the early stages of retinal organoid (RO) development. mTORC1 activity in ROs was the highest at 40 days of differentiation. MHY1485-induced hyperactivation of mTORC1 during this period resulted in a significant increase in the overall size of ROs compared to the untreated controls and rapamycin-treated Ros; there was also a marked increase in proliferative activity within the inner and outer layers of ROs. Moreover, the MHY1485-treated ROs showed a significant increase in the number of ectopic RGCs in the outer layers (indicating disruption of retinal laminar structure), with robust expression of HuC/D-binding proteins in the inner layers. These results demonstrate that mTORC1 plays a critical role in the development of hiPSC-derived ROs, especially during the early stages of differentiation.

11.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056769

RESUMO

Dermal macrophages containing melanin increase skin pigmentation since dermal melanin removal is slower than epidermal melanin removal. Lymphatic vessels are also involved in melanin clearance. We evaluated whether radiofrequency (RF) irradiation induced an increase in HSP90, which promotes lymphangiogenesis by activating the BRAF/MEK/ERK pathway and decreasing tyrosinase activity, in the UV-B exposed animal model. The HSP90/BRAF/MEK/ERK pathway was upregulated by RF. Tyrosinase activity and the VEGF-C/VEGFR 3/PI3K/pAKT1/2/pERK1/2 pathway, which increase lymphangiogenesis, as well as the expression of the lymphatic endothelial marker LYVE-1, were increased by RF. Additionally, the number of melanin-containing dermal macrophages, the melanin content in the lymph nodes, and melanin deposition in the skin were decreased by RF. In conclusion, RF increased HSP90/BRAF/MEK/ERK expression, which decreased tyrosinase activity and increased lymphangiogenesis to eventually promote the clearance of dermal melanin-containing macrophages, thereby decreasing skin pigmentation.


Assuntos
Linfangiogênese/efeitos da radiação , Ondas de Rádio , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Biomarcadores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90 , Hiperpigmentação/etiologia , Hiperpigmentação/metabolismo , Hiperpigmentação/patologia , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Melaninas/biossíntese , Modelos Biológicos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos da radiação , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
J Fish Dis ; 45(2): 249-259, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34843109

RESUMO

The control of bacterial pathogens, including Edwardsiella piscicida, in the aquaculture industry has high economic importance. This study aimed to identify a potential live vaccine candidate against E. piscicida infection to minimize the side effects and elicit immunity in the host. This study evaluated the virulence factors of E. piscicida CK108, with a special focus on the flagella. E. piscicida has two important homologous flagellin genes, namely flagellin-associated protein (fap) and flagellin domain-containing protein (fdp). CK226 (Δfap), CK247 (Δfdp) and CK248 (Δfap, fdp) mutant strains were constructed. Both CK226 and CK247 displayed decreased length and thickness of flagellar filaments, resulting in reduced bacterial swimming motility, while CK248 was non-motile as it lacked flagella. The loss of flagella and decreased motility was expected to decrease the pathogenicity of CK248. However, the median lethal dose (LD50 ) of CK248 against zebrafish was lower than those of the wild-type, CK226 and CK247 strains. The protective immunity and cytokine gene expression levels in the CK248-infected zebrafish were lower than those in the wild type-infected zebrafish. In conclusion, Fap and Fdp are essential for flagella formation and motility, and for stimulating fish immune response, which can be utilized as a potential adjuvants for E. piscicida vaccination.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Proteínas de Bactérias , Edwardsiella/genética , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/prevenção & controle , Flagelina/genética , Vacinas Atenuadas , Peixe-Zebra
13.
Molecules ; 26(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946730

RESUMO

Excess melanin deposition in the skin causes cosmetic problems. HSP70 upregulation decreases microphthalmia-associated transcription factor (MITF) expression, which eventually decreases tyrosinase activity and melanogenesis. Ultraviolet (UV) radiation upregulates p53, which increases the melanocortin receptor (MC1R) and MITF. Furthermore, HSP70 decreases p53 and radiofrequency irradiation (RF) increases HSP70. We evaluated whether RF increased HSP70 and decreased p53, consequently decreasing the MITF/tyrosinase pathway and melanogenesis in UV-B radiated animal skin. Various RF combinations with 50, 100, and 150 ms and 5, 10, and 15 W were performed on the UV-B radiated mouse skin every 2 d for 28 d. When RF was performed with 100 ms/10 W, melanin deposition, evaluated by Fontana-Masson staining, decreased without skin crust formation in the UV-B radiated skin. Thus, we evaluated the effect of RF on decreasing melanogenesis in the HEMn and UV-B radiated skin at a setting of 100 ms/10 W. HSP70 expression was decreased in the UV-B radiated skin but was increased by RF. The expression of p53, MC1R, and MITF increased in the UV-B radiated skin but was decreased by RF. The expression of p53, MC1R, and MITF increased in the α-MSH treated HEMn but was decreased by RF. The decreasing effects of RF on p53, MC1R, CREB and MITF were higher than those of HSP70-overexpressed HEMn. The decreasing effect of RF on p53, MC1R, CREB, and MITF disappeared in the HSP70-silenced HEMn. MC1R, CREB, and MITF were not significantly decreased by the p53 inhibitor in α-MSH treated HEMn. RF induced a greater decrease in MC1R, CREB, and MITF than the p53 inhibitor. Therefore, RF may have decreased melanin synthesis by increasing HSP70 and decreasing p53, thus decreasing MC1R/CREB/MITF and tyrosinase activity.


Assuntos
Proteínas de Choque Térmico HSP70/biossíntese , Melaninas/biossíntese , Ondas de Rádio , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Regulação para Cima/efeitos da radiação , Animais , Masculino , Camundongos
14.
Antioxidants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679696

RESUMO

The renin-angiotensin system is involved in the development of hypertension and sarcopenia. Increased levels of angiotensin II (Ang II) lead to upregulation of Ang II type 1 receptor (AT1R), which results in increasing reactive oxygen species (ROS) by NAD(P)H oxidase (Nox). Increased ROS led to increased helper T17 (Th17) and decreased regulatory T (Treg) cells through HIF-1α. Increased Th17 secretes more IL-17, leading to increased NF-κB and muscle atrophy. We evaluated the effect of Ecklonia cava extracts (ECE) and dieckol (DK) on attenuating muscle atrophy by decreasing AT1R and NOX activity in spontaneous hypertensive rats (SHRs). The serum levels of Ang II and expression of AT1R in the muscle were higher in SHRs than in normotensive animals of Wistar-Kyoto rats (2.4 and 1.8 times higher than WKY, respectively). The expression of AT1R decreased by ECE or DK (0.62 and 0.84 times lower than SHR, respectively). In SHRs, the expression of Nox 1, 2, and 4 were increased (1.2-1.15 times higher than WKY) but were decreased by the administration of ECE (0.8-0.9 times lower than SHR) or DK (0.7-0.9 times lower than SHR). The Nox activity was increased in SHRs (2.3 times more than WKY) and it was decreased by ECE (0.9 times lower than SHRs) and DK (0.9 times lower than SHRs). The expression of HIF-1α, a marker of Th17 (RORγt), and cytokine secreted by Th17 (IL-17) was increased in SHRs and was decreased by ECE or DK. The marker of Treg (Foxp3) and cytokine secreted from Treg cells (IL-10) was decreased in SHRs and was increased by ECE or DK. The expression of NF-κB/IL-1ß/TNF-α and MuRF-1/MAFbx/atrogin-1 was increased in SHRs and these were decreased by ECE or DK. The cross-sectional area of muscle fiber was decreased in SHRs (0.7 times lower than WKY) and was increased by ECE (1.3 times greater than SHR) or DK (1.5 times greater than SHR). In conclusion, ECE or DK leads to a decreased expression of AT1R and Nox activity which modulates Th17/Treg balance and consequently, decreased muscle atrophy.

15.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639063

RESUMO

Autophagy is involved in the degradation of melanosomes and the determination of skin color. TLR4 and tumor necrosis factor (TNF) signaling upregulates NF-kB expression, which is involved in the upregulation of mTOR. The activation of mTOR by UV-B exposure results in decreased autophagy, whereas radiofrequency (RF) irradiation decreases TLR4 and TNF receptor (TNFR) expression. We evaluated whether RF decreased skin pigmentation by restoring autophagy by decreasing the expression of TLR4 or TNFR/NF-κB/mTOR in the UV-B-irradiated animal model. UV-B radiation induced the expressions of TNFR, TLR, and NF-κB in the skin, which were all decreased by RF irradiation. RF irradiation also decreased phosphorylated mTOR expression and upregulated autophagy initiation factors such as FIP200, ULK1, ULK2, ATG13, and ATG101 in the UV-B-irradiated skin. Beclin 1 expression and the expression ratio of LC3-I to LC3-II were increased by UV-B/RF irradiation. Furthermore, melanin-containing autophagosomes increased with RF irradiation. Fontana-Masson staining showed that the amount of melanin deposition in the skin was decreased by RF irradiation. This study showed that RF irradiation decreased skin pigmentation by restoring melanosomal autophagy, and that the possible signal pathways which modulate autophagy could be TLR4, TNFR, NF-κB, and mTOR.


Assuntos
Autofagia/efeitos da radiação , Melaninas/biossíntese , Melanossomas/metabolismo , Ondas de Rádio , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Biomarcadores , Células Cultivadas , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Imuno-Histoquímica , NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Pigmentação da Pele/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Sci Adv ; 7(36): eabh0609, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516909

RESUMO

Microglia have been implicated in neuroinflammatory diseases, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). We demonstrate that microglia mediate EAE disease progression via a mechanism relying on the noncanonical nuclear factor kB (NF-κB) pathway. Microglia-specific deletion of the noncanonical NF-κB-inducing kinase (NIK) impairs EAE disease progression. Although microglial NIK is dispensable for the initial phase of T cell infiltration into the central nervous system (CNS) and EAE disease onset, it is critical for the subsequent CNS recruitment of inflammatory T cells and monocytes. Our data suggest that following their initial CNS infiltration, T cells activate the microglial noncanonical NF-κB pathway, which synergizes with the T cell-derived cytokine granulocyte-macrophage colony-stimulating factor to induce expression of chemokines involved in the second-wave of T cell recruitment and disease progression. These findings highlight a mechanism of microglial function that is dependent on NIK signaling and required for EAE disease progression.

17.
Mar Drugs ; 19(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34436275

RESUMO

Fucoidans are cell wall polysaccharides found in various species of brown seaweeds. They are fucose-containing sulfated polysaccharides (FCSPs) and comprise 5-20% of the algal dry weight. Fucoidans possess multiple bioactivities, including antioxidant, anticoagulant, antithrombotic, anti-inflammatory, antiviral, anti-lipidemic, anti-metastatic, anti-diabetic and anti-cancer effects. Dietary fucoidans provide small but constant amounts of FCSPs to the intestinal tract, which can reorganize the composition of commensal microbiota altered by FCSPs, and consequently control inflammation symptoms in the intestine. Although the bioactivities of fucoidans have been well described, there is limited evidence to implicate their effect on gut microbiota and bowel health. In this review, we summarize the recent studies that introduce the fundamental characteristics of various kinds of fucoidans and discuss their potential in altering commensal microorganisms and influencing intestinal diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/prevenção & controle , Polissacarídeos/uso terapêutico , Alga Marinha , Organismos Aquáticos , Humanos , Fitoterapia
18.
Blood ; 138(23): 2360-2371, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34255829

RESUMO

B-cell-activating factor (BAFF) mediates B-cell survival and, when deregulated, contributes to autoimmune diseases and B-cell malignancies. The mechanism connecting BAFF receptor (BAFFR) signal to downstream pathways and pathophysiological functions is not well understood. Here we identified DYRK1a as a kinase that responds to BAFF stimulation and mediates BAFF-induced B-cell survival. B-cell-specific DYRK1a deficiency causes peripheral B-cell reduction and ameliorates autoimmunity in a mouse model of lupus. An unbiased screen identified DYRK1a as a protein that interacts with TRAF3, a ubiquitin ligase component mediating degradation of the noncanonical nuclear factor (NF)-κB-inducing kinase (NIK). DYRK1a phosphorylates TRAF3 at serine-29 to interfere with its function in mediating NIK degradation, thereby facilitating BAFF-induced NIK accumulation and noncanonical NF-κB activation. Interestingly, B-cell acute lymphoblastic leukemia (B-ALL) cells express high levels of BAFFR and respond to BAFF for noncanonical NF-κB activation and survival in a DYRK1a-dependent manner. Furthermore, DYRK1a promotes a mouse model of B-ALL through activation of the noncanonical NF-κB pathway. These results establish DYRK1a as a critical BAFFR signaling mediator and provide novel insight into B-ALL pathogenesis.


Assuntos
Autoimunidade , Fator Ativador de Células B/imunologia , Leucemia de Células B/imunologia , NF-kappa B/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Tirosina Quinases/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/imunologia , Linfócitos B/patologia , Carcinogênese/imunologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Humanos , Leucemia de Células B/patologia , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Quinases Dyrk
19.
Cell Commun Signal ; 19(1): 29, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637094

RESUMO

BACKGROUND: Neurodegeneration, an early event in the pathogenesis of diabetic retinopathy (DR), precedes clinically detectable microvascular damage. Autophagy dysregulation is considered a potential cause of neuronal cell loss, however underlying mechanisms remain unclear. The mechanistic target of rapamycin (mTOR) integrates diverse environmental signals to coordinate biological processes, including autophagy. Here, we investigated the role of mTOR signaling in neuronal cell death in DR. METHODS: Diabetes was induced by a single intraperitoneal injection of streptozotocin and tissue samples were harvested at 1, 2, 3, 4, and 6 months of diabetes. Early-stage of DR was investigated in 1-month-diabetic mice treated with phlorizin (two daily subcutaneous injections at a dose of 200 mg/kg of body weight during the last 7 full days of the experiment and the morning of the 8th day, 3 h before sacrifice) or rapamycin (daily intraperitoneal injections, at a dose of 3 mg/kg for the same period as for phlorizin treatment). The effect of autophagy modulation on retinal ganglion cells was investigated in 3-months-diabetic mice treated with phlorizin (two daily subcutaneous injections during the last 10 full days of the experiment and the morning of the 11th day, 3 h before sacrifice) or MHY1485 (daily i.p. injections, at a dose of 10 mg/kg for the same period as for phlorizin treatment). Tissue samples obtained from treated/untreated diabetic mice and age-matched controls were used for Western blot and histologic analysis. RESULTS: mTOR-related proteins and glucose transporter 1 (GLUT1) was upregulated at 1 month and downregulated in the following period up to 6 months. Diabetes-induced neurodegeneration was characterized by an increase of apoptotic marker-cleaved caspase 3, a decrease of the total number of cells, and NeuN immunoreactivity in the ganglion cell layer, as well as an increase of autophagic protein. Insulin-independent glycemic control restored the mTOR pathway activity and GLUT1 expression, along with a decrease of autophagic and apoptotic proteins in 3-months-diabetic mice neuroretina. However, blockade of autophagy using MHY1485 resulted in a more protective effect on ganglion cells compared with phlorizin treatment. CONCLUSION: Collectively, our study describes the mechanisms of neurodegeneration through the hyperglycemia/ mTOR/ autophagy/ apoptosis pathway. Video Abstract.


Assuntos
Autofagia , Retinopatia Diabética/patologia , Células Ganglionares da Retina/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Retinopatia Diabética/sangue , Transportador de Glucose Tipo 1/metabolismo , Hiperglicemia/sangue , Hiperglicemia/complicações , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Fosfosserina/metabolismo , Células Ganglionares da Retina/metabolismo , Proteína S6 Ribossômica/metabolismo , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA