Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Br J Cancer ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951697

RESUMO

BACKGROUND: DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS: To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS: We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION: Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.

2.
J Am Chem Soc ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020477

RESUMO

Realizating of a low work function (WF) and room-temperature stability in electrides is highly desired for various applications, such as electron emitters, catalysts, and ion batteries. Herein, a criterion based on the electron localization function (ELF) and projected density of states (PDOS) in the vacancy of the oxide electride [Ca24Al28O64]4+(4e-) (C12A7) was adopted to screen out 13 electrides in single-metal oxides. By creating oxygen vacancies in nonelectride oxides, we find out 9 of them showed vacancy-induced anionic electrons. Considering the thermodynamic stability, two electrides with ordered vacancies, Nb3O3 and Ce4O3, stand out and show vacancy-induced zero-dimensional anionic electrons. Both exhibit low WFs, namely 3.1 and 2.3 eV for Nb3O3 and Ce4O3, respectively. In the case of Nb3O3, the ELF at oxygen vacancies decreases first and then increases during the decrease in the total number of electrons in self-consistent calculations due to Nb's multivalent state. Meanwhile, Ce4O3 displays promise for ammonia synthesis due to its low hydrogen diffusion barrier and low activation energy. Further calculations revealed that CeO with disordered vacancies at low concentrations also exhibits electride-like properties, suggesting its potential as a substitute for Ce4O3.

3.
Biochem Pharmacol ; 226: 116382, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909785

RESUMO

Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.

4.
Asian J Psychiatr ; 97: 104092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823081

RESUMO

BACKGROUND: Early life stress (ELS) significantly increases the risk of mood disorders and affects the neurodevelopment of the primary cortex. HYPOTHESIS: Modulating the primary cortex through neural intervention can ameliorate the impact of ELS on brain development and consequently alleviate its effects on mood disorders. METHOD: We induced the chronic unpredictable mild stress (CUMS) model in adolescent rats, followed by applying repetitive transcranial magnetic stimulation (rTMS) to their primary cortex in early adulthood. To assess the applicability of primary cortex rTMS in humans, we recruited individuals aged 17-25 with mood disorders who had experienced ELS and performed primary cortex rTMS on them. Functional magnetic resonance imaging (fMRI) and depression-related behavioral and clinical symptoms were conducted in both rats and human subjects before and after the rTMS. RESULTS: In animals, fMRI analysis revealed increased activation in the primary cortex of CUMS rats and decrease subcortical activation. Following the intervention of primary cortex rTMS, the abnormal functional activity was reversed. Similarly, in mood disorders patients with ELS, increased activation in the primary cortex and decreased activation in the frontal cortex were observed. During rTMS intervention, similar neuroimaging improvements were noted, particularly decreased activation in the primary cortex. This suggests that targeted rTMS in the primary cortex can reverse the abnormal neuroimaging. CONCLUSION: This cross-species translational study has identified the primary cortex as a key region in mood disorders patients with ELS. Targeting the primary cortex with rTMS can correct abnormal functional activity while improving symptoms. Our study provides translational evidence for therapeutics targeting the ELS factor of mood disorders patients.


Assuntos
Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Transtornos do Humor , Estresse Psicológico , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Ratos , Estresse Psicológico/terapia , Estresse Psicológico/fisiopatologia , Adulto , Masculino , Humanos , Adulto Jovem , Adolescente , Transtornos do Humor/terapia , Transtornos do Humor/fisiopatologia , Feminino , Ratos Sprague-Dawley , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem
5.
Biomed Opt Express ; 15(6): 3831-3847, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867796

RESUMO

Optical microscopy has witnessed notable advancements but has also become more costly and complex. Conventional wide field microscopy (WFM) has low resolution and shallow depth-of-field (DOF), which limits its applications in practical biological experiments. Recently, confocal and light sheet microscopy become major workhorses for biology that incorporate high-precision scanning to perform imaging within an extended DOF but at the sacrifice of expense, complexity, and imaging speed. Here, we propose deep focus microscopy, an efficient framework optimized both in hardware and algorithm to address the tradeoff between resolution and DOF. Our deep focus microscopy achieves large-DOF and high-resolution projection imaging by integrating a deep focus network (DFnet) into light field microscopy (LFM) setups. Based on our constructed dataset, deep focus microscopy features a significantly enhanced spatial resolution of ∼260 nm, an extended DOF of over 30 µm, and broad generalization across diverse sample structures. It also reduces the computational costs by four orders of magnitude compared to conventional LFM technologies. We demonstrate the excellent performance of deep focus microscopy in vivo, including long-term observations of cell division and migrasome formation in zebrafish embryos and mouse livers at high resolution without background contamination.

6.
Acta Pharmacol Sin ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914676

RESUMO

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.

7.
J Am Chem Soc ; 146(23): 15751-15760, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38833380

RESUMO

Safety hazards caused by flammable electrolytes have been major obstacles to the practical application of sodium-ion batteries (SIBs). The adoption of nonflammable all-phosphate electrolytes can effectively improve the safety of SIBs; however, traditional low-concentration phosphate electrolytes are not compatible with carbon-based anodes. Herein, we report an anion-cation interaction modulation strategy to design low-concentration phosphate electrolytes with superior physicochemical properties. Tris(2,2,2-trifluoroethyl) phosphate (TFEP) is introduced as a cosolvent to regulate the ion-solvent-coordinated (ISC) structure through enhancing the anion-cation interactions, forming the stable anion-induced ISC (AI-ISC) structure, even at a low salt concentration (1.22 M). Through spectroscopy analyses and theoretical calculations, we reveal the underlying mechanism responsible for the stabilization of these electrolytes. Impressively, both the hard carbon (HC) anode and Na4Fe2.91(PO4)2(P2O7) (NFPP) cathode work well with the developed electrolytes. The designed phosphate electrolyte enables Ah-level HC//NFPP pouch cells with an average Coulombic efficiency (CE) of over 99.9% and a capacity retention of 84.5% after 2000 cycles. In addition, the pouch cells can operate in a wide temperature range (-20 to 60 °C) and successfully pass rigorous safety testing. This work provides new insight into the design of the electrochemically compatibility electrolyte for high-safety and long-lifetime SIBs.

8.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725843

RESUMO

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Inibidores de MTOR , Proteína Proto-Oncogênica c-ets-1 , Proteína 1A de Ligação a Tacrolimo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Camundongos Nus , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Biochem Biophys Res Commun ; 722: 150167, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38797154

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous and are necessary to sustain basic life processes. The intracellular Fe-S clusters do not form spontaneously and many proteins are required for their biosynthesis and delivery. The bacterial P-loop NTPase family protein ApbC participates in Fe-S cluster assembly and transfers the cluster into apoproteins, with the Walker A motif and CxxC motif being essential for functionality of ApbC in Fe-S protein biogenesis. However, the structural basis underlying the ApbC activity and the motifs' role remains unclear. Here, we report the crystal structure of Escherichia coli ApbC at 2.8 Å resolution. The dimeric structure is in a W shape and the active site is located in the 2-fold center. The function of the motifs can be annotated by structural analyses. ApbC has an additional N-terminal domain that differs from other P-loop NTPases, possibly conferring its inherent specificity in vivo.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas Ferro-Enxofre , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
10.
Cell Death Differ ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816578

RESUMO

There is a lack of effective treatments to overcome resistance to EGFR-TKIs in EGFR mutant tumors. A deeper understanding of resistance mechanisms can provide insights into reducing or eliminating resistance, and can potentially deliver targeted treatment measures to overcome resistance. Here, we identified that the dynamic changes of the tumor immune environment were important extrinsic factors driving tumor resistance to EGFR-TKIs in EGFR mutant cell lines and syngeneic tumor-bearing mice. Our results demonstrate that the acquired resistance to EGFR-TKIs is accompanied by aberrant expression of PD-L2, leading a dynamic shift from an initially favorable tumor immune environment to an immunosuppressive phenotype. PD-L2 expression significantly affected EGFR mutant cell apoptosis that depended on the proportion and function of CD8+ T cells in the tumor immune environment. Combined with single-cell sequencing and experimental results, we demonstrated that PD-L2 specifically inhibited the proliferation of CD8+ T cells and the secretion of granzyme B and perforin, leading to reduced apoptosis mediated by CD8+ T cells and enhanced immune escape of tumor cells, which drives EGFR-TKIs resistance. Importantly, we have identified a potent natural small-molecule inhibitor of PD-L2, zinc undecylenate. In vitro, it selectively and potently blocks the PD-L2/PD-1 interaction. In vivo, it abolishes the suppressive effect of the PD-L2-overexpressing tumor immune microenvironment by blocking PD-L2/PD-1 signaling. Moreover, the combination of zinc undecylenate and EGFR-TKIs can synergistically reverse tumor resistance, which is dependent on CD8+ T cells mediating apoptosis. Our study uncovers the PD-L2/PD-1 signaling pathway as a driving factor to mediate EGFR-TKIs resistance, and identifies a new naturally-derived agent to reverse EGFR-TKIs resistance.

11.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814866

RESUMO

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transformação Celular Neoplásica , Cloridrato de Erlotinib , Neoplasias Pulmonares , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Camundongos , Cloridrato de Erlotinib/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Via de Sinalização Wnt/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Transcrição Gênica , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase
12.
Front Cell Infect Microbiol ; 14: 1367975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736750

RESUMO

The endemic outbreak of SADS-CoV has resulted in economic losses and potentially threatened the safety of China's pig industry. The molecular epidemiology of SADS-CoV in pig herds has been investigated in many provinces in China. However, there are no data over a long-time span, and there is a lack of extensive serological surveys to assess the prevalence of SADS-CoV in Chinese swine herds since the discovery of SADS-CoV. In this study, an indirect anti-SADS-CoV IgG enzyme-linked immunosorbent assay (ELISA) based on the SADS-CoV S1 protein was established to investigate the seroprevalence of SADS-CoV in Chinese swine herds. Cross-reactivity assays, indirect immunofluorescence, and western blotting assays showed that the developed ELISA had excellent SADS-CoV specificity. In total, 12,978 pig serum samples from 29 provinces/municipalities/autonomous regions in China were tested from 2022 to 2023. The results showed that the general seroprevalence of SADS-CoV in China was 59.97%, with seroprevalence ranging from 16.7% to 77.12% in different provinces and from 42.61% to 68.45% in different months. SADS-CoV is widely prevalent in China, and its seroprevalence was higher in Northeast China, North China, and Central China than in other regions. Among the four seasons, the prevalence of SADS-CoV was the highest in spring and the lowest in autumn. The results of this study provide the general seroprevalence profile of SADS-CoV in China, facilitating the understanding of the prevalence of SADS-CoV in pigs. More importantly, this study is beneficial in formulating preventive and control measures for SADS-CoV and may provide directions for vaccine development.


Assuntos
Anticorpos Antivirais , Infecções por Coronavirus , Ensaio de Imunoadsorção Enzimática , Doenças dos Suínos , Animais , China/epidemiologia , Estudos Soroepidemiológicos , Suínos , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Antivirais/sangue , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/diagnóstico , Imunoglobulina G/sangue , Alphacoronavirus/imunologia , Alphacoronavirus/genética , Reações Cruzadas , Sensibilidade e Especificidade
13.
Front Public Health ; 12: 1329768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737867

RESUMO

Objectives: This study aimed to analyze the influencing factors of hospitalization cost of hypertensive patients in TCM (traditional Chinese medicine, TCM) hospitals, which can provide a scientific basis for hospitals to control the hospitalization cost of hypertension. Methods: In this study, 3,595 hospitalized patients with a primary diagnosis of tertiary hypertension in Tianshui City Hospital of TCM, Gansu Province, China, from January 2017 to June 2022, were used as research subjects. Using univariate analysis to identify the relevant variables of hospitalization cost, followed by incorporating the statistically significant variables of univariate analysis as independent variables in multiple linear regression analysis, and establishing the path model based on the results of the multiple linear regression finally, to explore the factors influencing hospitalization cost comprehensively. Results: The results showed that hospitalization cost of hypertension patients were mainly influenced by length of stay, age, admission pathways, payment methods of medical insurance, and visit times, with length of stay being the most critical factor. Conclusion: The Chinese government should actively exert the characteristics and advantages of TCM in the treatment of chronic diseases such as hypertension, consistently optimize the treatment plans of TCM, effectively reduce the length of stay and steadily improve the health literacy level of patients, to alleviate the illnesses pain and reduce the economic burden of patients.


Assuntos
Hospitalização , Hipertensão , Medicina Tradicional Chinesa , Humanos , Feminino , Hipertensão/economia , Masculino , Pessoa de Meia-Idade , Medicina Tradicional Chinesa/economia , Medicina Tradicional Chinesa/estatística & dados numéricos , Hospitalização/economia , Hospitalização/estatística & dados numéricos , China , Idoso , Tempo de Internação/estatística & dados numéricos , Tempo de Internação/economia , Adulto , Custos Hospitalares/estatística & dados numéricos
14.
BMC Health Serv Res ; 24(1): 605, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720277

RESUMO

BACKGROUND: Distal radius fractures (DRFs) have become a public health problem for all countries, bringing a heavier economic burden of disease globally, with China's disease economic burden being even more acute due to the trend of an aging population. This study aimed to explore the influencing factors of hospitalization cost of patients with DRFs in traditional Chinese medicine (TCMa) hospitals to provide a scientific basis for controlling hospitalization cost. METHODS: With 1306 cases of DRFs patients hospitalized in 15 public TCMa hospitals in two cities of Gansu Province in China from January 2017 to 2022 as the study object, the influencing factors of hospitalization cost were studied in depth gradually through univariate analysis, multiple linear regression, and path model. RESULTS: Hospitalization cost of patients with DRFs is mainly affected by the length of stay, surgery and operation, hospital levels, payment methods of medical insurance, use of TCMa preparations, complications and comorbidities, and clinical pathways. The length of stay is the most critical factor influencing the hospitalization cost, and the longer the length of stay, the higher the hospitalization cost. CONCLUSIONS: TCMa hospitals should actively take advantage of TCMb diagnostic modalities and therapeutic methods to ensure the efficacy of treatment and effectively reduce the length of stay at the same time, to lower hospitalization cost. It is also necessary to further deepen the reform of the medical insurance payment methods and strengthen the construction of the hierarchical diagnosis and treatment system, to make the patients receive reasonable reimbursement for medical expenses, thus effectively alleviating the economic burden of the disease in the patients with DRFs.


Assuntos
Custos Hospitalares , Hospitalização , Tempo de Internação , Medicina Tradicional Chinesa , Fraturas do Rádio , Humanos , China , Masculino , Feminino , Pessoa de Meia-Idade , Medicina Tradicional Chinesa/economia , Idoso , Fraturas do Rádio/economia , Fraturas do Rádio/terapia , Custos Hospitalares/estatística & dados numéricos , Tempo de Internação/economia , Tempo de Internação/estatística & dados numéricos , Hospitalização/economia , Adulto , Hospitais Públicos/economia , Fraturas do Punho
15.
J Nanobiotechnology ; 22(1): 141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561739

RESUMO

Osteosarcoma (OS) is an aggressive bone tumor with strong invasiveness, rapid metastasis, and dreadful mortality. Chemotherapy is a commonly used approach for OS treatment but is limited by the development of drug resistance and long-term adverse effects. To date, OS still lacks the curative treatment. Herein, we fabricated pyrite-based nanoparticles (FeS2@CP NPs) as synergetic therapeutic platform by integrating photothermal therapy (PTT) and chemo-dynamic therapy (CDT) into one system. The synthetic FeS2@CP NPs showed superior Fenton reaction catalytic activity. FeS2@CP NPs-based CDT efficaciously eradicated the tumor cells by initiating dual-effect of killing of apoptosis and ferroptosis. Furthermore, the generated heat from FeS2@CP under near-infrared region II (NIR-II) laser irradiation could not only inhibit tumor's growth, but also promote tumor cell apoptosis and ferroptosis by accelerating •OH production and GSH depletion. Finally, the photothermal/NIR II-enhanced CDT synergistic therapy showed excellent osteosarcoma treatment effects both in vitro and in vivo with negligible side effects. Overall, this work provided a high-performance and multifunctional Fenton catalyst for osteosarcoma synergistic therapy, which provided a pathway for the clinical application of PTT augmented CDT.


Assuntos
Neoplasias Ósseas , Nanopartículas , Neoplasias , Osteossarcoma , Sulfetos , Humanos , Terapia Fototérmica , Osteossarcoma/tratamento farmacológico , Ferro , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Peróxido de Hidrogênio
16.
Opt Express ; 32(4): 6266-6276, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439334

RESUMO

Augmented reality (AR) display, as a next-generation innovative technology, is revolutionizing the ways of perceiving and communicating by overlaying virtual images onto real-world scenes. However, the current AR devices are often bulky and cumbersome, posing challenges for long-term wearability. Metasurfaces have flexible capabilities of manipulating light waves at subwavelength scales, making them as ideal candidates for replacing traditional optical elements in AR display devices. In this work, we propose and fabricate what we believe is a novel reflective polarization multiplexing gradient metasurface based on propagation phase principle to replace the optical combiner element in traditional AR display devices. Our designed metasurface exhibits different polarization modulations for reflected and transmitted light, enabling efficient deflection of reflected light while minimizing the impact on transmitted light. This work reveals the significant potential of metasurfaces in next-generation optical display systems and provides a reliable theoretical foundation for future integrated waveguide schemes, driving the development of next-generation optical display products towards lightweight and comfortable.

17.
EMBO Mol Med ; 16(4): 885-903, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448544

RESUMO

Cancer is a heterogeneous disease. Although both tumor metabolism and tumor immune microenvironment are recognized as driving factors in tumorigenesis, the relationship between them is still not well-known, and potential combined targeting approaches remain to be identified. Here, we demonstrated a negative correlation between the expression of NAMPT, an NAD+ metabolism enzyme, and PD-L1 expression in various cancer cell lines. A clinical study showed that a NAMPTHigh PD-L1Low expression pattern predicts poor prognosis in patients with various cancers. In addition, pharmacological inhibition of NAMPT results in the transcription upregulation of PD-L1 by SIRT-mediated acetylation change of NF-κB p65, and blocking PD-L1 would induce NAMPT expression through a HIF-1-dependent glycolysis pathway. Based on these findings, we designed and synthesized a dual NAMPT/PD-L1 targeting compound, LZFPN-90, which inhibits cell growth in a NAMPT-dependent manner and blocks the cell cycle, subsequently inducing apoptosis. Under co-culture conditions, LZFPN-90 treatment contributes to the proliferation and activation of T cells and blocks the growth of cancer cells. Using mice bearing genetically manipulated tumors, we confirmed that LZFPN-90 exerted target-dependent antitumor activities, affecting metabolic processes and the immune system. In conclusion, our results demonstrate the relevance of NAD+-related metabolic processes in antitumor immunity and suggest that co-targeting NAD+ metabolism and PD-L1 represents a promising therapeutic approach.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Animais , Camundongos , NAD , Neoplasias/patologia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Cell Commun Signal ; 22(1): 157, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429625

RESUMO

BACKGROUND: O-GlcNAcylation modification affects multiple physiological and pathophysiolocal functions of cells. Altered O-GlcNAcylation was reported to participate in antivirus response. Stimulator of interferon genes (STING) is an adaptor mediating DNA virus-induced innate immune response. Whether STING is able to be modified by O-GlcNAcylation and how O-GlcNAcylation affects STING-mediated anti-DNA virus response remain unknown. METHODS: Metabolomics analysis was used for detecting metabolic alterations in HSV-1 infection cells. Succinylated wheat germ agglutinin (sWGA), co-immunoprecipitation, and pull-down assay were employed for determining O-GlcNAcylation. Mutagenesis PCR was applied for the generation of STING mutants. WT and Sting1-/- C57BL/6 mice (KOCMP-72512-Sting1-B6NVA) were infected with HSV-1 and treated with O-GlcNAcylation inhibitor for validating the role of STING O-GlcNAcylation in antiviral response. RESULTS: STING was functionally activated by O-GlcNAcylation in host cells challenged with HSV-1. We demonstrated that this signaling event was initiated by virus infection-enhanced hexosamine biosynthesis pathway (HBP). HSV-1 (or viral DNA mimics) promotes glucose metabolism of host cells with a marked increase in HBP, which provides donor glucosamine for O-GlcNAcylation. STING was O-GlcNAcylated on threonine 229, which led to lysine 63-linked ubiquitination of STING and activation of antiviral immune responses. Mutation of STING T229 to alanine abrogated STING activation and reduced HSV-1 stimulated production of interferon (IFN). Application of 6-diazo-5-oxonorleucine (DON), an agent that blocks the production of UDP-GlcNAc and inhibits O-GlcNAcylation, markedly attenuated the removal of HSV-1 in wild type C57BL/6 mice, leading to an increased viral retention, elevated infiltration of inflammatory cells, and worsened tissue damages to those displayed in STING gene knockout mice. Together, our data suggest that STING is O-GlcNAcylated in HSV-1, which is crucial for an effective antiviral innate immune response. CONCLUSION: HSV-1 infection activates the generation of UDP-Glc-NAc by upregulating the HBP metabolism. Elevated UDP-Glc-NAc promotes the O-GlcNAcylation of STING, which mediates the anti-viral function of STING. Targeting O-GlcNAcylation of STING could be a useful strategy for antiviral innate immunity.


Assuntos
Herpesvirus Humano 1 , Proteínas de Membrana , Animais , Camundongos , Herpesvirus Humano 1/metabolismo , Imunidade Inata , Interferons , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Difosfato de Uridina
19.
Brain Sci ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38539645

RESUMO

Adaptation aftereffects-in which prolonged prior experience (adaptation) can bias the subsequent judgment of ambiguous stimuli-are a ubiquitous phenomenon. Numerous studies have found behaviorally stable adaptation aftereffects in a variety of areas. However, it is unclear which brain regions are responsible for this function, particularly in the case of high-level emotional adaptation aftereffects. To address this question, the present study used fMRI technology to investigate the neural mechanism of emotional adaptation aftereffects. Consistent with previous studies, we observed typical emotional adaptation effects in behavior. Specifically, for the same morphed facial images, participants perceived increased sadness after adapting to a happy facial image and increased happiness after adapting to a sad facial image. More crucially, by contrasting neural responses to ambiguous morphed facial images (i.e., facial images of intermediate morph levels) following adaptation to happy and sad expressions, we demonstrated a neural mechanism of emotional aftereffects supported by the left amygdala/insula, right angular gyrus, and right inferior frontal gyrus. These results suggest that the aftereffects of emotional adaptation are supported not only by brain regions subserving emotional processing but also by those subserving cognitive control.

20.
Curr Opin Biotechnol ; 86: 103078, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38359604

RESUMO

Single-cell technologies have been widely used in biological studies and generated a plethora of single-cell data to be interpreted. Due to the inclusion of the priori metabolic network knowledge as well as gene-protein-reaction associations, genome-scale metabolic models (GEMs) have been a powerful tool to integrate and thereby interpret various omics data mostly from bulk samples. Here, we first review two common ways to leverage bulk omics data with GEMs and then discuss advances on integrative analysis of single-cell omics data with GEMs. We end by presenting our views on current challenges and perspectives in this field.


Assuntos
Genoma , Modelos Biológicos , Genoma/genética , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA