RESUMO
The synthesis of one-dimensional zinc oxide nanorod photoelectrodes through a chemical solution method and their application in dye-sensitized solar cells are described in this paper. A multiple growth approach was used to fabricate zinc oxide nanorods with varying length-to-diameter ratios, and their dye adsorption properties were characterized using ultraviolet-visible spectroscopy. The zinc oxide photoelectrodes with different length-to-diameter ratios were subsequently incorporated into dye-sensitized solar cells, and their performance and carrier lifetime were analyzed using a solar simulator, monochromatic incident photon-to-electron conversion efficiency, and electrochemical impedance spectroscopy. The highest efficiency achieved was 0.74%. The results indicate that the quality of the zinc oxide nanorods synthesized through the multiple growth approach is consistent, with the uniformity and morphology of the nanorods having the greatest impact on device efficiency.
RESUMO
In Cu2ZnSnS4 (CZTS) solar cells, it is crucial to suppress the generation of and remove the SnS2 secondary phase to improve the solar cell characteristics, as the SnS2 secondary phase affects the barrier for carrier collection and diode characteristics of the device. In this study, the nano-metallic precursor was modified to effectively suppress the generation of the SnS2 secondary phase on the surface and simultaneously improve the uniformity and quality of the thin film. The CZTS bifacial solar cells prepared via the proposed method exhibited significantly improved junction-rectifying characteristics, as the efficiency was improved to 1.59%. The proposed method to figurremove SnS2 is effective, simple, and environmentally friendly.
RESUMO
In this study, a radio-frequency magnetron sputter system was used to deposit Al2O3 doped ZnO (AZO) thin films at room temperature, and the soda lime glass (SLG) substrates were placed at different zones relative to the center of the sample holder under the target. The samples were then analyzed using an X-ray diffractometer, Hall-effect measurement system, UV-visible spectrophotometer, and X-ray photoelectron spectroscopy. It was found that the electrical, structural, and optical properties of AZO films strongly depend on the target racetrack. The AZO thin film grown at a location outside the racetrack not only has the most suitable figure of merit for transparent conductive films, but also retains the least residual stress, which makes it the most suitable candidate for use as a CZTSe transparent conductive layer. When applied to CZTSe solar cells, the photoelectric efficiency is 3.56%.
RESUMO
In this study, two-dimensional ZnO nanoflower photoelectrodes were prepared using a chemical solution method and applied to dye-sensitised solar cells. By growing ZnO nanoflowers with different lengths on the photoelectrodes, the effects of the ZnO nanoflowers on the omnidirectional light-harvesting and broadband of dye-sensitised solar cells were investigated. According to the field emission scanning electron microscope and UV-Vis-NIR measurements of the prepared ZnO nanoflowers at different lengths, it can be determined that the amount of dye adsorption and degree of light scattering are affected by the lengths of the nanoflowers. A finite difference time-domain simulation was used to verify whether the degree of light scattering was affected by the lengths of the ZnO nanoflowers. In addition, the prepared ZnO nanoflower photoelectrodes of different lengths were applied to dye-sensitised solar cells. The photoelectric element efficiency, carrier life cycle, and element characteristics under wide-angle measurements were investigated through electrochemical impedance spectroscopy, the monochromic incident photon-to-electronic conversion efficiency, and a solar simulator. At high angles, the difference in efficiency of multi-directional incident light was reduced from 46% to 12%, which effectively improved the capturing characteristics of the multi-directional incident light during light scattering.
RESUMO
This paper presents the use of nanorods of different sizes, deposited from a chemical solution, as an antireflection layer in copper-zinc-tin selenide (CZTSe) solar cells. With the aid of the nanorods, the surface reflection of the CZTSe solar cells was reduced from 7.76% to 2.97%, and a cell efficiency of 14% was obtained as a result. Omni-directional anti-reflection was verified by the angle-dependent reflection measurements. The nanorod arrays also provided the CZTSe solar cells with a hydrophobic surface, allowing it to exhibit high resistance against humidity during weatherability tests. This shows that the surface passivation brought by the nanorod layer at the surface could effectively extend the lifetime of the CZTSe solar cells. The rate of efficiency decay of the CZTSe solar cells was reduced by 46.85% from that of the device without a nanorod array at the surface, indicating that this surface layer not only provided effective resistance against reflection at the device surface, but also served as a passivation layer and humidity-resistant surface-protection layer.
RESUMO
In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of CuxSe and ZnxSn1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and CuxSe phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (JSC) of 37.47 mA/cm2, open circuit voltage (VOC) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm2. No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and completely overwhelmed the diode current at a measurement temperature of 200 °C. This is due to interlayer diffusion of metal that increases the shunt leakage current and decreases the efficiency of the CZTSe thin film solar cells.
RESUMO
In this study, aligned zinc oxide (ZnO) nanorods (NRs) with various lengths (1.5-5 µm) were deposited on ZnO:Al (AZO)-coated glass substrates by using a solution phase deposition method; these NRs were prepared for application as working electrodes to increase the photovoltaic conversion efficiency of solar cells. The results were observed in detail by using X-ray diffraction, field-emission scanning electron microscopy, UV-visible spectrophotometry, electrochemical impedance spectroscopy, incident photo-to-current conversion efficiency, and solar simulation. The results indicated that when the lengths of the ZnO NRs increased, the adsorption of D-719 dyes through the ZnO NRs increased along with enhancing the short-circuit photocurrent and open-circuit voltage of the cell. An optimal power conversion efficiency of 0.64% was obtained in a dye-sensitized solar cell (DSSC) containing the ZnO NR with a length of 5 µm. The objective of this study was to facilitate the development of a ZnO-based DSSC.
RESUMO
This study investigated the influence of ZnO nanostructures on dye adsorption to increase the photovoltaic conversion efficiency of solar cells. ZnO nanostructures were grown in both tree-like and nanorod (NR) arrays on an AZO/FTO film structure by using a hydrothermal method. The results were observed in detail using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), UV-visible spectrophotometry, electrochemical impedance spectroscopy, and solar simulation. The selective growth of tree-like ZnO was found to exhibit higher dye adsorption loading and conversion efficiency than ZnO NRs. The multiple 'branches' of 'tree-like nanostructures' increases the surface area for higher light harvesting and dye loading while reducing charge recombination. These improvements result in a 15% enhancement in power conversion. The objective of this study is to facilitate the development of a ZnO-based dye-sensitized solar cell.
RESUMO
In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.
RESUMO
Broadband and omnidirectional light harvesting is important in photovoltaic technology because of its wide spectral range of radiation and the sun's movement. This study reports the fabrication and characterization of zinc oxide (ZnO) dandelions on Cu(In,Ga)Se2 (CIGS) solar cells. The fabrication of dandelions involves the combination of self-assembled polystyrene (PS) nanospheres and the hydrothermal method, which is one of the simplest and cheapest methods of fabricating a three-dimensional, closely packed periodic structure. This study also investigates the optimization on dimension of the PS nanospheres using the rigorous coupled-wave analysis (RCWA) method. This study uses an angle-resolved reflectance spectroscope and a homemade rotatable photo I-V measurement to investigate the omnidirectional and broadband antireflections of the proposed dandelion structure. Under a simulated one-sun condition and a light incident angle of up to 60°, cells with ZnO dandelions arrays enhanced the short-circuit current density by 31.87%. Consequently, ZnO dandelions are suitable for creating an omnidirectionally antireflective coating for photovoltaic devices.
RESUMO
An effective approach is demonstrated for enhancing photoelectric conversion of Cu(In,Ga)Se2 (CIGS) solar cells with three-dimensional ZnO nanotree arrays. Under a simulated one-sun condition, cells with ZnO nanotree arrays enhance the short-circuit current density by 10.62%. The omnidirectional anti-reflection of CIGS solar cells with various ZnO nanostructures is also investigated. The solar-spectrum weighted reflectance is approximately less than 5% for incident angles of up to 60° and for the wavelengths primarily from 400 nm to 1000 nm. This enhancement in light harvesting is attributable to the gradual refractive index profile between the ZnO nanostructures and air.