Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Pathog ; 19(8): e1011598, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647312

RESUMO

Merkel cell polyomavirus (MCPyV) is associated with approximately 80% of cases of Merkel cell carcinoma (MCC), an aggressive type of skin cancer. The incidence of MCC has tripled over the past twenty years, but there are currently very few effective targeted treatments. A better understanding of the MCPyV life cycle and its oncogenic mechanisms is needed to unveil novel strategies for the prevention and treatment of MCC. MCPyV infection and oncogenesis are reliant on the expression of the early viral oncoproteins, which drive the viral life cycle and MCPyV+ MCC tumor cell growth. To date, the molecular mechanisms regulating the transcription of the MCPyV oncogenes remain largely uncharacterized. In this study, we investigated how MCPyV early transcription is regulated to support viral infection and MCC tumorigenesis. Our studies established the roles of multiple cellular factors in the control of MCPyV gene expression. Inhibitor screening experiments revealed that the histone acetyltransferases p300 and CBP positively regulate MCPyV transcription. Their regulation of viral gene expression occurs through coactivation of the transcription factor NF-κB, which binds to the viral genome to drive MCPyV oncogene expression in a manner that is tightly controlled through a negative feedback loop. Furthermore, we discovered that small molecule inhibitors specifically targeting p300/CBP histone acetyltransferase activity are effective at blocking MCPyV tumor antigen expression and MCPyV+ MCC cell proliferation. Together, our work establishes key cellular factors regulating MCPyV transcription, providing the basis for understanding the largely unknown mechanisms governing MCPyV transcription that defines its infectious host cell tropism, viral life cycle, and oncogenic potential. Our studies also identify a novel therapeutic strategy against MCPyV+ MCC through specific blockage of MCPyV oncogene expression and MCC tumor growth.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Poliomavírus das Células de Merkel/genética , Carcinogênese/genética , Oncogenes , Carcinoma de Célula de Merkel/genética , Neoplasias Cutâneas/genética
2.
J Virol ; 97(4): e0190722, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36946735

RESUMO

Merkel cell polyomavirus (MCPyV) has been associated with approximately 80% of Merkel cell carcinoma (MCC), an aggressive and increasingly incident skin cancer. The link between host innate immunity, viral load control, and carcinogenesis has been established but poorly characterized. We previously established the importance of the STING and NF-κB pathways in the host innate immune response to viral infection. In this study, we further discovered that MCPyV infection of human dermal fibroblasts (HDFs) induces the expression of type I and III interferons (IFNs), which in turn stimulate robust expression of IFN-stimulated genes (ISGs). Blocking type I IFN downstream signaling using an IFN-ß antibody, JAK inhibitors, and CRISPR knockout of the receptor dramatically repressed MCPyV infection-induced ISG expression but did not significantly restore viral replication activities. These findings suggest that IFN-mediated induction of ISGs in response to MCPyV infection is not crucial to viral control. Instead, we found that type I IFN exerts a more direct effect on MCPyV infection postentry by repressing early viral transcription. We further demonstrated that growth factors normally upregulated in wounded or UV-irradiated human skin can significantly stimulate MCPyV gene expression and replication. Together, these data suggest that in healthy individuals, host antiviral responses, such as IFN production induced by viral activity, may restrict viral propagation to reduce MCPyV burden. Meanwhile, growth factors induced by skin abrasion or UV irradiation may stimulate infected dermal fibroblasts to promote MCPyV propagation. A delicate balance of these mutually antagonizing factors provides a mechanism to support persistent MCPyV infection. IMPORTANCE Merkel cell carcinoma is an aggressive skin cancer that is particularly lethal to immunocompromised individuals. Though rare, MCC incidence has increased significantly in recent years. There are no lasting and effective treatments for metastatic disease, highlighting the need for additional treatment and prevention strategies. By investigating how the host innate immune system interfaces with Merkel cell polyomavirus, the etiological agent of most of these cancers, our studies identified key factors necessary for viral control, as well as conditions that support viral propagation. These studies provide new insights for understanding how the virus balances the effects of the host immune defenses and of growth factor stimulation to achieve persistent infection. Since virus-positive MCC requires the expression of viral oncogenes to survive, our observation that type I IFN can repress viral oncogene transcription indicates that these cytokines could be explored as a viable therapeutic option for treating patients with virus-positive MCC.


Assuntos
Carcinoma de Célula de Merkel , Interferons , Infecções por Polyomavirus , Transdução de Sinais , Infecções Tumorais por Vírus , Poliomavírus das Células de Merkel/imunologia , Interferons/fisiologia , Transdução de Sinais/imunologia , Infecções por Polyomavirus/imunologia , Infecções Tumorais por Vírus/imunologia , Carcinoma de Célula de Merkel/imunologia , Imunidade Inata/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Expressão Gênica/imunologia , Replicação Viral/genética
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498833

RESUMO

Treating immunosuppressive tumors represents a major challenge in cancer therapies. Activation of STING signaling has shown remarkable potential to invigorate the immunologically "cold" tumor microenvironment (TME). However, we have shown that STING is silenced in many human cancers, including pancreatic ductal adenocarcinoma (PDAC) and Merkel cell carcinoma (MCC). In this study, we demonstrated that mRNA-lipid nanoparticle (LNP) technology could be used to efficiently deliver naturally occurring constitutively active STING mutant STINGR284S into these cancer cells to reactivate STING antitumor immunity and trigger robust killing of tumor cells. STING agonists are being actively pursued as cancer immunotherapies. However, traditional STING agonists can induce T cell cytotoxicity, counteracting the desired antitumor immune response. In addition, the antitumor efficacy of traditional STING agonists obligatorily depends on STING expression and does not work in STING-silenced cancers. Importantly, we found that STINGR284S mRNA-LNP does not introduce T cell cytotoxicity. Our studies demonstrated that mRNA-LNP delivery of STINGR284S can reactivate the antitumor response without introducing antiproliferative effects in lymphocytic immune cells, overcoming the toxicity and limitations of conventional STING agonists. Our work therefore identifies a novel therapeutic tool for reactivating antitumor immunity in an array of STING-silenced immunologically "cold" tumors that are refractory to current therapies.


Assuntos
Carcinoma de Célula de Merkel , Nanopartículas , Neoplasias Cutâneas , Humanos , RNA Mensageiro/genética , Proteínas de Membrana/metabolismo , Microambiente Tumoral , Imunoterapia
4.
Tumour Virus Res ; 13: 200232, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34920178

RESUMO

Merkel cell polyomavirus (MCPyV) is a ubiquitous skin infection that can cause Merkel cell carcinoma (MCC), a highly lethal form of skin cancer with a nearly 50% mortality rate. Since the discovery of MCPyV in 2008, great advances have been made to improve our understanding of how the viral encoded oncoproteins contribute to MCC oncogenesis. However, our knowledge of the MCPyV infectious life cycle and its oncogenic mechanisms are still incomplete. The incidence of MCC has tripled over the past two decades, but effective treatments are lacking. Only recently have there been major victories in combatting metastatic MCC with the application of PD-1 immune checkpoint blockade. Still, these immune-based therapies are not ideal for patients with a medical need to maintain systemic immune suppression. As such, a better understanding of MCPyV's oncogenic mechanisms is needed in order to develop more effective and targeted therapies against virus-associated MCC. In this review, we discuss current areas of interest for MCPyV and MCC research and the progress made in elucidating both the natural host of MCPyV infection and the cell of origin for MCC. We also highlight the remaining gaps in our knowledge on the transcriptional regulation of MCPyV, which may be key to understanding and targeting viral oncogenesis for developing future therapies.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Carcinogênese/genética , Carcinoma de Célula de Merkel/patologia , Humanos , Poliomavírus das Células de Merkel/genética , Infecções por Polyomavirus/complicações , Neoplasias Cutâneas/patologia , Infecções Tumorais por Vírus/complicações
5.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33789998

RESUMO

The COVID-19 pandemic poses a serious global health threat. The rapid global spread of SARS-CoV-2 highlights an urgent need to develop effective therapeutics for blocking SARS-CoV-2 infection and spread. Stimulator of Interferon Genes (STING) is a chief element in host antiviral defense pathways. In this study, we examined the impact of the STING signaling pathway on coronavirus infection using the human coronavirus OC43 (HCoV-OC43) model. We found that HCoV-OC43 infection did not stimulate the STING signaling pathway, but the activation of STING signaling effectively inhibits HCoV-OC43 infection to a much greater extent than that of type I interferons (IFNs). We also discovered that IRF3, the key STING downstream innate immune effector, is essential for this anticoronavirus activity. In addition, we found that the amidobenzimidazole (ABZI)-based human STING agonist diABZI robustly blocks the infection of not only HCoV-OC43 but also SARS-CoV-2. Therefore, our study identifies the STING signaling pathway as a potential therapeutic target that could be exploited for developing broad-spectrum antiviral therapeutics against multiple coronavirus strains in order to face the challenge of future coronavirus outbreaks.IMPORTANCE The highly infectious and lethal SARS-CoV-2 is posing an unprecedented threat to public health. Other coronaviruses are likely to jump from a nonhuman animal to humans in the future. Novel broad-spectrum antiviral therapeutics are therefore needed to control known pathogenic coronaviruses such as SARS-CoV-2 and its newly mutated variants, as well as future coronavirus outbreaks. STING signaling is a well-established host defense pathway, but its role in coronavirus infection remains unclear. In the present study, we found that activation of the STING signaling pathway robustly inhibits infection of HCoV-OC43 and SARS-CoV-2. These results identified the STING pathway as a novel target for controlling the spread of known pathogenic coronaviruses, as well as emerging coronavirus outbreaks.


Assuntos
COVID-19/metabolismo , Coronavirus Humano OC43/metabolismo , Proteínas de Membrana/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Células A549 , Animais , COVID-19/genética , Chlorocebus aethiops , Coronavirus Humano OC43/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , SARS-CoV-2/genética , Células Vero
6.
J Virol ; 95(13): e0221120, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33883226

RESUMO

Merkel cell polyomavirus (MCPyV) infects most of the human population asymptomatically, but in rare cases it leads to a highly aggressive skin cancer called Merkel cell carcinoma (MCC). MCC incidence is much higher in aging and immunocompromised populations. The epidemiology of MCC suggests that dysbiosis between the host immune response and the MCPyV infectious cycle could contribute to the development of MCPyV-associated MCC. Insufficient restriction of MCPyV by normal cellular processes, for example, could promote the incidental oncogenic MCPyV integration events and/or entry into the original cell of MCC. Progress toward understanding MCPyV biology has been hindered by its narrow cellular tropism. Our discovery that primary human dermal fibroblasts (HDFs) support MCPyV infection has made it possible to closely model cellular responses to different stages of the infectious cycle. The present study reveals that the onset of MCPyV replication and early gene expression induces an inflammatory cytokine and interferon-stimulated gene (ISG) response. The cGAS-STING pathway, in coordination with NF-κB, mediates induction of this innate immune gene expression program. Further, silencing of cGAS or NF-κB pathway factors led to elevated MCPyV replication. We also discovered that the PYHIN protein IFI16 localizes to MCPyV replication centers but does not contribute to the induction of ISGs. Instead, IFI16 upregulates inflammatory cytokines in response to MCPyV infection by an alternative mechanism. The work described herein establishes a foundation for exploring how changes to the skin microenvironment induced by aging or immunodeficiency might alter the fate of MCPyV and its host cell to encourage carcinogenesis. IMPORTANCE MCC has a high rate of mortality and an increasing incidence. Immune-checkpoint therapies have improved the prognosis of patients with metastatic MCC. Still, a significant proportion of the patients fail to respond to immune-checkpoint therapies or have a medical need for iatrogenic immune-suppression. A greater understanding of MCPyV biology could inform targeted therapies for MCPyV-associated MCC. Moreover, cellular events preceding MCC oncogenesis remain largely unknown. The present study aims to explore how MCPyV interfaces with innate immunity during its infectious cycle. We describe how MCPyV replication and/or transcription elicit an innate immune response via cGAS-STING, NF-κB, and IFI16. We also explore the effects of this response on MCPyV replication. Our findings illustrate how healthy cellular conditions may allow low-level infection that evades immune destruction until highly active replication is restricted by host responses. Conversely, pathological conditions could result in unbridled MCPyV replication that licenses MCC tumorigenesis.


Assuntos
Citocinas/imunologia , Fibroblastos/imunologia , Imunidade Inata/imunologia , Poliomavírus das Células de Merkel/imunologia , Pele/imunologia , Sistemas CRISPR-Cas/genética , Carcinoma de Célula de Merkel/patologia , Células Cultivadas , Citocinas/biossíntese , Fibroblastos/virologia , Células HEK293 , Humanos , Imunidade Inata/genética , Interferons/biossíntese , Interferons/imunologia , Proteínas de Membrana/genética , Poliomavírus das Células de Merkel/crescimento & desenvolvimento , NF-kappa B/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Infecções por Polyomavirus/imunologia , Pele/citologia , Infecções Tumorais por Vírus/imunologia
7.
Viruses ; 12(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987952

RESUMO

Polyomavirus infection is widespread in the human population. This family of viruses normally maintains latent infection within the host cell but can cause a range of human pathologies, especially in immunocompromised individuals. Among several known pathogenic human polyomaviruses, JC polyomavirus (JCPyV) has the potential to cause the demyelinating disease progressive multifocal leukoencephalopathy (PML); BK polyomavirus (BKPyV) can cause nephropathy in kidney transplant recipients, and Merkel cell polyomavirus (MCPyV) is associated with a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). While the mechanisms by which these viruses give rise to the relevant diseases are not well understood, it is clear that the control of gene expression in each polyomavirus plays an important role in determining the infectious tropism of the virus as well as their potential to promote disease progression. In this review, we discuss the mechanisms governing the transcriptional regulation of these pathogenic human polyomaviruses in addition to the best-studied simian vacuolating virus 40 (SV40). We highlight the roles of viral cis-acting DNA elements, encoded proteins and miRNAs that control the viral gene expression. We will also underline the cellular transcription factors and epigenetic modifications that regulate the gene expression of these viruses.


Assuntos
Regulação Viral da Expressão Gênica/genética , Infecções por Polyomavirus/patologia , Polyomavirus/genética , Polyomavirus/metabolismo , Infecções Tumorais por Vírus/patologia , Vírus BK/genética , Vírus BK/metabolismo , Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/virologia , Humanos , Vírus JC/genética , Vírus JC/metabolismo , Infecção Latente/virologia , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Infecções por Polyomavirus/virologia , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Infecções Tumorais por Vírus/virologia
8.
Cancers (Basel) ; 12(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575711

RESUMO

The epigenetic reader BRD4 binds acetylated histones and plays a central role in controlling cellular gene transcription and proliferation. Dysregulation of BRD4's activity has been implicated in the pathogenesis of a wide variety of cancers. While blocking BRD4 interaction with acetylated histones using BET inhibitors (BETis) has been tested in clinical trials, many cancers have acquired BETi resistance. However, the underlying mechanisms are poorly understood and BETi resistance remains a pressing clinical problem. We previously showed that BRD4 phosphorylation supports stronger chromatin binding and target oncogene expression. In this study, we discovered that BRD4 is hyperphosphorylated by CDK1 during mitosis and determined the major CDK1 phosphorylation sites in BRD4. Using CRISPR/Cas9 gene editing, we replaced endogenous BRD4 with a non-phosphorylatable mutant and demonstrated that CDK1-mediated BRD4 phosphorylation contributes to BETi resistance. CDK1 over-activation frequently observed in cancers has the potential to cause aberrant BRD4 hyperphosphorylation persisting outside of mitosis to strengthen its target gene binding and confer BETi resistance. We found that dual CDK1 and BET inhibition generates a synergistic effect in killing BETi-resistant cancer cells. Our study therefore suggests that CDK1 inhibition can be employed to overcome tumor BETi resistance and improve treatments for BRD4-associated cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA