Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Phys Chem Lett ; 15(16): 4268-4275, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607695

RESUMO

The search for alternative chemical systems other than polymers with chain topologies for soft structural materials raises general interests in fundamental materials and chemical sciences. It is also appealing from an engineering perspective for the urgent need to resolve the typical trade-offs of polymer systems. Herein, a subnanometer molecular cluster, polyhedral oligomeric silsesquioxanes, is assembled into molecular nanoparticles (MNPs) with star topology. Broadly tunable viscoelasticity can be realized by fine-tuning the MNPs' deformability. Being analogous to polymeric systems, the hierarchical structural relaxation dynamics can be observed, and their relaxation time and temperature dependence are dominated by the linker flexibilities. This not only provides microscopic understanding on MNP's unique viscoelasticity but also offers enormous opportunities for modulating their mechanical properties via linker engineering. Our work proves the possibility of applying structural units with particle topologies for the design of soft structural materials.

2.
ACS Appl Mater Interfaces ; 16(15): 19563-19570, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38577839

RESUMO

The large sizes of granular particles lead to their slow diffusive dynamics and significant interparticle friction, bringing enormous difficulty to tune the mechanical properties and processability of the granular materials (GMs). Herein, 1 nm polyhedral oligomeric silsesquioxane (POSS) particles functionalized with azobenzene are designed as structural units, and the obtained GMs show unique photoswitchable viscoelasticity. The azobenzene group can undergo a reversible trans-cis conformation switch while the π-π stacking among the azobenzene fragments is only favored by the trans-conformation due to molecular geometrical requirements. The POSS units from neighboring assemblies close pack to form microdomains, and the POSS is under confinement by both the supramolecular bonding and the other POSS in the microdomains. The simultaneous breaking of the two types of confinement is difficult and, therefore, the free diffusion of POSS is hindered, leading to the elasticity of the GMs of trans-POSS. For cis-POSS, the interparticle supramolecular interaction is weak and the POSS unit can undergo free diffusion, contributing to their high flowability at room temperature. The photoswitching viscoelasticity of GMs is further used for self-healing and photoswitchable adhesion. This work paves new pathways for the regulation of material viscoelasticity and the design of GM-based smart materials.

3.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624128

RESUMO

The granular materials of soft particles (SPs) demonstrate unique viscoelasticity distinct from general colloidal and polymer systems. Exploiting dynamic light scattering measurements, together with molecular dynamics simulations, we study the diffusive dynamics of soft particle clusters (SPCs) with spherical and cylindrical brush topologies, respectively, in the melts of SPs. A topologically constrained relaxation theory is proposed by quantitatively correlating the relaxation time to the topologies of the SPCs, through the mean free space (Va) of tethered SPs in the cluster. The tethered SPs in SPCs are crowded by SPs of the melts to form the cage zones, and the cooperative diffusion of the tether SPs in the zones is required for the diffusive motion of SPCs. The cage zone serves as an entropic barrier for the diffusion of SP clusters, while its strength is determined by Va. Three characteristic modes can be confirmed: localized non-diffusive mode around critical Va, diffusive mode with Va deviating far from the critical value, and a sub-diffusive mode as an interlude between two limits. Our studies raise attention to the emergent physical properties of materials based on SPs via a topological design while opening new avenues for the design of soft structural materials.

4.
Cell Prolif ; : e13639, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553796

RESUMO

Aneuploidy frequently occurs in cancer and developmental diseases such as Down syndrome, with its functional consequences implicated in dosage effects on gene expression and global perturbation of stress response and cell proliferation pathways. However, how aneuploidy affects spatial genome organization remains less understood. In this study, we addressed this question by utilizing the previously established isogenic wild-type (WT) and trisomic mouse embryonic stem cells (mESCs). We employed a combination of Hi-C, RNA-seq, chromosome painting and nascent RNA imaging technologies to compare the spatial genome structures and gene transcription among these cells. We found that trisomy has little effect on spatial genome organization at the level of A/B compartment or topologically associating domain (TAD). Inter-chromosomal interactions are associated with chromosome regions with high gene density, active histone modifications and high transcription levels, which are confirmed by imaging. Imaging also revealed contracted chromosome volume and weakened transcriptional activity for trisomic chromosomes, suggesting potential implications for the transcriptional output of these chromosomes. Our data resources and findings may contribute to a better understanding of the consequences of aneuploidy from the angle of spatial genome organization.

5.
ACS Appl Mater Interfaces ; 16(12): 15640-15648, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488314

RESUMO

The noble-metal-free surface-enhanced Raman scattering (SERS) substrates have gained significant attention due to their abundant sources, signal uniformity, biocompatibility, and chemical stability. However, the lack of controllable synthesis and fabrication methods for high-SERS-activity noble-metal-free substrates hinders their practical applications. In this study, we demonstrate the use of a femtosecond laser direct writing technique to precisely manipulate and modify microstructures, resulting in enhanced SERS signals from Sb2S3 nonmetal-oxide semiconductor materials. Compared with unpatterned Sb2S3 samples, the Sb2S3 microstructures exhibited up to a 16-fold increase in Raman scattering intensity. Interestingly, our results indicate that the femtosecond laser can induce a transformation in the crystalline state of Sb2S3 and significantly enhance the Raman spectrum signal within the Sb2S3 microstructures. This enhancement is also highly dependent on the period and depth of the microstructures, possibly due to the cavity effects, resulting in a stronger local field enhancement.

6.
Nano Lett ; 24(11): 3307-3314, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456631

RESUMO

Resulting from the dense packing of subnanometer molecular clusters, molecular granular materials (MGMs) are shown to maintain high elasticity far above their apparent glass transition temperature (Tg*). However, our microscopic understanding of their structure-property relationship is still poor. Herein, 1 nm polyhedral oligomeric silsesquioxanes (POSSs) are appended to a backbone chain in a brush configuration with different flexible linker chains. Assemblies of these brush polymers exhibit hierarchical relaxation dynamics with the glass transition arising from the cooperative dynamics of packed POSSs. The interaction among the assemblies can be strengthened by increasing the rigidity of linkers with the MGM relaxation modes changing from colloid- to polymer chain-like behavior, rendering their tunable viscoelasticity. This finally contributes to the decoupling of mechanical and thermal properties by showing elasticity dominant mechanical properties at a temperature 150 K above the Tg*.

7.
RSC Adv ; 14(5): 3202-3208, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249677

RESUMO

Selective laser melting (SLM) additive manufacturing technology with different oxygen contents leads to the appearance of spherical solids of different sizes on the surface of the part, which affects the mechanical properties of the part, surface roughness, etc. In this study, the SLM molding technique was applied using three different 316L metal powders with different oxygen contents. The spheroidization properties and morphology of the samples were observed using a Quanta 200 environmental scanning electron microscope (ESEM), and the samples were observed microscopically and subjected to EDX spectroscopy using metallographic microscopy, and the mechanical properties were investigated. The results of the study showed that when using gas atomized powders, no spheroidization occurred when the oxygen content of the powders was 5.44 ± 0.01% in all cases, whereas using water atomized powders produced spherical structures with larger dimensions. This observation was closely related to the shape and particle size of the powder. When 316L metal powder with an oxygen content of 4.52 ± 0.01% was used for molding, small spherical structures appeared on the surface of the samples. When metal powder with an oxygen content of 5.44 ± 0.01% was used for the molding, larger spherical structures appeared on the surface of the samples. When the powder with an oxygen content of 5.90 ± 0.01% was used for the molding, more small spherical structures and some large spherical structures appeared on the surface of the samples. This suggests that higher oxygen levels may inhibit the occurrence of spheroidization. EDX spectroscopic analysis revealed that the white matter on the surface of the samples without spheroidization was mainly composed of Fe and Cr, whereas the white matter on the surface of the large-sized spherical structures was mainly composed of Si and Mn, which may be related to the oxygenophilicity of the various substances.

8.
J Orthop Surg Res ; 19(1): 79, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243260

RESUMO

To verify the reliability and accuracy of wall thickness ratio analysis to determine the degree of bone healing, fracture models were established with 6 beagles. X-ray, micro-CT, and CT scans were performed at 24 weeks. The healthy side and the affected side were used to simulate the three-dimensional geometric model after internal fixation, and the mesh was divided. The mean and median CT wall thickness values were obtained through the wall thickness analysis. X-ray, CT, micro-CT, and gross appearance were used to determine the degree of bone healing, which was compared with wall thickness analysis. There was a positive correlation between the average CT value and the median wall thickness. The correlation coefficient analysis of the median wall thickness ratio (R2) and healing index ratio (R3) showed a positive correlation. The results of the wall thickness ratio (R2) and the healing index ratio (R3) were used to determine bone healing, and the results were consistent with the results of the actual mechanical test and image analysis. The results of wall thickness ratio analysis were significantly correlated with the degree of bone healing. This method is simple, rapid, and practical to analyze and judge the degree of bone healing.


Assuntos
Fraturas Ósseas , Animais , Cães , Reprodutibilidade dos Testes , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Microtomografia por Raio-X , Radiografia , Cicatrização , Consolidação da Fratura
9.
Angew Chem Int Ed Engl ; 63(12): e202318355, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38265930

RESUMO

Cost-effective, non-fluorinated polymer proton exchange membranes (PEMs) are highly desirable in emerging hydrogen fuel cells (FCs) technology; however, their low proton conductivities and poor chemical and dimension stabilities hinder their further development as alternatives to commercial Nafion®. Here, we report the inorganic-organic hybridization strategy by facilely complexing commercial polymers, polyvinyl butyral (PVB), with inorganic molecular nanoparticles, H3 PW12 O40 (PW) via supramolecular interaction. The strong affinity among them endows the obtained nanocomposites amphiphilicity and further lead to phase separation for bi-continuous structures with both inter-connected proton transportation channels and robust polymer scaffold, enabling high proton conductivities, mechanical/dimension stability and barrier performance, and the H2 /O2 FCs equipped with the composite PEM show promising power densities and long-term stability. Interestingly, the hybrid PEM can be fabricated continuously in large scale at challenging ~10 µm thickness via typical tape casting technique originated from their facile complexing strategy and the hybrids' excellent mechanical properties. This work not only provides potential material systems for commercial PEMs, but also raises interest for the research on hybrid composites for PEMs.

10.
Materials (Basel) ; 16(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138788

RESUMO

Agricultural mechanization is crucial in enhancing production efficiency, alleviating labor demands, reducing costs, improving agricultural product quality, and promoting sustainable development. However, wear and tear are inevitable when using agricultural machinery. The failure of critical wear-resistant parts is responsible for over 50% of rural machinery breakdowns. For instance, a domestic combine harvester typically only operates trouble-free for 20 to 30 h, and the service life of a rotary plow knife is approximately 80 h. Investigating the wear performance of key farm machinery components reinforces machinery design and maintenance strategies, extends machinery lifespans, enhances agricultural production efficiency, and advances agrarian sustainability. This paper provides a comprehensive overview of the latest research on the wear resistance of crucial agricultural machinery components. It delves into the factors influencing the wear resistance of these components and explores current effective measures to address wear-related issues. Additionally, it also summarizes the challenges and opportunities in researching the wear performance of key components in agricultural machinery and future development directions.

11.
Materials (Basel) ; 16(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138840

RESUMO

Mastering the variations in the stability of a polarization vortex is fundamental for the development of ferroelectric devices based on polarization vortex domain structures. Some phase field simulations were conducted on PbTiO3 nanofilms with an initial polarization vortex under uniaxial tension or compression to investigate the conditions of vortex instability and the effects of aspect ratio of nanofilms and temperature on them. The instability of a polarization vortex is strongly dependent on aspect ratio and temperature. The critical compressive stress increases with decreasing aspect ratio under the action of compressive stress. However, the critical tensile stress first decreases and then increases with decreasing aspect ratio, then continues to decrease. There are two inflection points in the curve. In addition, an elevated temperature makes both the critical tensile and compressive stresses decline, and will also cause the aspect ratio corresponding to the inflection point to decrease. These are very important for the design of promising nano-ferroelectric devices based on polarization vortices to improve their performance while maintaining storage density.

12.
Sci Rep ; 13(1): 20650, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001361

RESUMO

To evaluate the possibility of judging the degree of bone healing by wall thickness analysis provide reference for quantitative analysis of bone healing. Patients with lower limb fracture from April 2014 to October 2019 were recruited and divided into bone healing (group A), poor bone healing (group B), and nonunion (group C). Models were built in Mimics 20.0 with DICOM 3.0 data obtained from patient's CT. Three-dimensional geometric models of unaffected limb and affected limb after simulated removal of internal fixation were established, corresponding to basic phase and simulated phase, respectively. Wall thickness analysis was performed to obtain median wall thickness after meshing. R2 (median wall thickness ratio), R4 (CT value ratio), and R5 (healing index ratio) were obtained by calculating the ratio of each value in simulated phase to that in basic phase. Receiver operating characteristic curve analysis was used to evaluate the ability of Wall Thickness Analysis to indicate fracture healing. 112 CT scans of 79 patients were included in the study. The frequency of categorization in groups A, B, and C was 49, 37 and 26, respectively. The median R2 in groups A, B, and C was 0.91, 0.80, and 0.67, respectively (group A > group B > group C, all P < 0.05). The best cutoff point for R2 in predicting bone healing was 0.84, and predicting bone nonunion was 0.74. The Wall Thickness Analysis can be used to quantitatively evaluate fracture healing state, with median wall thickness ratio as a more intuitive and reliable judgment index.


Assuntos
Ossos da Extremidade Inferior , Fraturas Ósseas , Humanos , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Fixação Interna de Fraturas , Consolidação da Fratura , Extremidade Inferior/diagnóstico por imagem , Resultado do Tratamento , Estudos Retrospectivos
13.
Materials (Basel) ; 16(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37763607

RESUMO

In this study, the phase field method has been used to study the effect of second phase particles with different shapes and different orientations on the grain growth of AZ31 magnesium alloy, after annealing at 350 °C for 100 min. The results show that the shape of the second phase particles would have an effect on the grain growth; the refinement effect of elliptical particles and rod-shaped particles was similar, and better than the spherical particles; the spatial arrangement direction of the second phase particles had no significant effect on the grain growth. On the other hand, when the microstructure of AZ31 magnesium alloy contained second phase particles with different shapes, the effect of mixing different shapes of second phase particles on the grain refinement was enhanced gradually with the decrease im the volume fraction of spherical particles.

14.
Materials (Basel) ; 16(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629972

RESUMO

Mo, TiH2, Al and graphite elemental powders were used as starting materials for the activation reaction sintering process, which was employed to fabricate porous Mo2TiAlC2. The alteration of phase constitution, volume expansion, porosity, pore size and surface morphology of porous Mo2TiAlC2 with sintering temperatures ranging from 700 °C to 1500 °C were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and pore size tester. Both the pore formation mechanism and activation reaction process at each temperature stage were investigated. The experimental results illustrate that the sintered discs of porous Mo2TiAlC2 exhibit obvious volume expansion and pore structure change during the sintering process. Before 1300 °C, the volume expansion rate and porosity increase with the increment of temperature. However, with the sintering temperature above 1300 °C, the volume expansion rate and porosity decrease. At the final sintering temperature of 1500 °C, porous Mo2TiAlC2 with a volume expansion rate of 35.74%, overall porosity of 47.1%, and uniform pore structure was synthesized. The pore-forming mechanism of porous Mo2TiAlC2 is discussed, and the evolution of pressed pores, the removal of molding agents, the decomposition of TiH2, and the Kirkendall effect caused by different diffusion rates of elements in the diffusion reaction are all accountable for the formation of pores.

15.
Nanomaterials (Basel) ; 13(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570476

RESUMO

Ce-MnOx composite oxide catalysts with different proportions were prepared using the coprecipitation method, and the CO-removal ability of the catalysts with the tested temperature range of 60-140 °C was investigated systematically. The effect of Ce and Mn ratios on the catalytic oxidation performance of CO was investigated using X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), H2 temperature programmed reduction (H2-TPR), CO-temperature programmed desorption (CO-TPD), and in situ infrared spectra. The experimental results reveal that under the same test conditions, the CO conversion rate of pure Mn3O4 reaches 95.4% at 170 °C. Additionally, at 140 °C, the Ce-MnOx series composite oxide catalyst converts CO at a rate of over 96%, outperforming single-phase Mn3O4 in terms of catalytic performance. With the decrement in Ce content, the performance of Ce-MnOx series composite oxide catalysts first increase and then decrease. The Ce MnOx catalyst behaves best when Ce:Mn = 1:1, with a CO conversion rate of 99.96% at 140 °C and 91.98% at 100 °C.

16.
J Phys Chem Lett ; 14(26): 5966-5974, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37345920

RESUMO

With the manipulation of surface charges and loadings, 1 nm super-acidic metal oxide clusters can co-crystallize with poly(ethylene glycol) (PEG) at molecular scale for thermoplastic anhydrous proton exchange membranes (PEMs). The coexistence of crystalline and amorphous regions endows the PEMs with a high Young's modulus and high flexibility, while the noncovalent complex interactions enable facile preparation and (re)processing. Furthermore, the diffusive dynamics of PEG chains is slowed by the confinement effect, while the local segmental dynamics is accelerated due to the transition of the chain conformation from helix to zigzag when confined in the crystalline framework. This greatly facilitates proton transportation in the crystalline region for an excellent anhydrous proton conductivity of 4.5 × 10-3 S cm-1 at 90 °C. The balanced proton conductivity, mechanical strength, and processability of the PEMs contribute to the promising power density of H2/O2 fuel cells assembled with co-crystalline PEMs at high temperatures under dry conditions.

17.
Front Aging Neurosci ; 15: 1175598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304076

RESUMO

The autophagy-lysosomal pathway (ALP) is the major biological pathway responsible for clearing intracellular protein aggregates, therefore a promising target for treating diseases featuring the accumulation of aggregation-prone proteins, such as Huntington disease (HD). However, accumulating evidence indicated that targeting ALP to treat HD is pharmacologically challenging due to the complexity of autophagy and the autophagy defects in HD cells. Here in this mini-review, we summarized the current challenges in targeting ALP in HD and discussed a number of latest findings on aggrephagy and targeted protein degradation, which we believe will provide potential new targets and new strategies for treating HD via ALP.

18.
Polymers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242944

RESUMO

This study revolves around the issues raised by the current semiconductor device metal casings (mainly composed of aluminum and its alloys), such as resource and energy consumption, complexity of the production process, and environmental pollution. To address these issues, researchers have proposed an eco-friendly and high-performance alternative material-Al2O3 particle-filled nylon composite functional material. This research conducted detailed characterization and analysis of the composite material through scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The results show that the Al2O3 particle-filled nylon composite material has a significantly superior thermal conductivity, about twice as high as that of pure nylon material. Meanwhile, the composite material has good thermal stability, maintaining its performance in high-temperature environments above 240 °C. This performance is attributed to the tight bonding interface between the Al2O3 particles and the nylon matrix, which not only improves the heat transfer efficiency but also significantly enhances the material's mechanical properties, with a strength of up to 53 MPa. This study is of great significance, aiming to provide a high-performance composite material that can alleviate resource consumption and environmental pollution issues, with excellent polishability, thermal conductivity, and moldability, which is expected to play a positive role in reducing resource consumption and environmental pollution problems. In terms of potential applications, Al2O3/PA6 composite material can be widely used in heat dissipation components for LED semiconductor lighting and other high-temperature heat dissipation components, thereby improving product performance and service life, reducing energy consumption and environmental burden, and laying a solid foundation for the development and application of future high-performance eco-friendly materials.

19.
Materials (Basel) ; 16(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37176386

RESUMO

The insulated-gate bipolar transistor (IGBT) represents a crucial component within the domain of power semiconductor devices, which finds ubiquitous employment across a range of critical domains, including new energy vehicles, smart grid systems, rail transit, aerospace, etc. The main characteristics of its operating environment are high voltage, large current, and high power density, which can easily cause issues, such as thermal stress, thermal fatigue, and mechanical stress. Therefore, the reliability of IGBT module packaging has become a critical research topic. This study focuses on the damage of power device solder layers and applies heat transfer theory. Three typical solders for welding IGBTs (92.5Pb5Sn2.5Ag, Sn3.0Ag0.5Cu (SAC305), and nano-silver solder paste) are analyzed using JMatPro software to simulate their characteristics. First, a finite element analysis method is used to simulate the entire IGBT module with ANSYS Workbench platform. The study compares the impact of three types of solders on the overall heat transfer of the IGBT module under normal operation and welding layer damage conditions. The characteristics are analyzed based on changes in the junction temperature, heat flow path, and the law of thermal stress and deformation. The findings indicated that under steady-state working conditions, adjacent chips in a multi-chip IGBT module had significant thermal coupling, with a maximum temperature difference between chip junctions reaching up to 13 °C, and a phenomenon of heat concentration emerged. The three types of solders could change the thermal conductivity and heat transfer direction of the IGBT module to varying degrees, resulting in a temperature change of 3-6 °C. Under conditions of solder layer damage, the junction temperature increased linearly with the severity of the damage. In the 92.5Pb5Sn2.5Ag and Sn3.0Ag0.5Cu (SAC305) solders, the presence of intermetallic compounds (IMCs) led to more stress concentration points in the solder layer, with the maximum stress reaching 7.14661 × 107 MPa and concentrated at the edge of the solder layer. The nano-silver solder layer had the best thermal conductivity, and the maximum thermal deformation under the same conditions was only 1.9092 × 10-5 m.

20.
Chem Asian J ; 18(10): e202300184, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37116101

RESUMO

Molecular granular materials (MGMs) are constructed with sub-nanoscale molecular clusters (MCs) as the building units and they have recently been observed to possess enriched functionalities distinct from granular materials of colloid nanoparticles. Herein, the birth and recent research advances in MGMs are summarized with the topics covering the precise synthesis of MC assemblies with target topologies, the hierarchical relaxation dynamics and tuneable viscoelasticity, impact-resistant capacity, and proton conductivity performance. The extremely small size of MC renders them two features: bulk diffusive dynamics with energy scale close to thermal fluctuation energy and the dominant volume fraction of surface structures. This finally leads to the hierarchical relaxation dynamics and broadly tuneable viscoelasticity of MGMs although the structural units are with small sizes and low Mw . Therefore, MGMs have been applied as impact resistant materials and proton conductors for the highly tuneable relaxation dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA