Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Heliyon ; 10(16): e36516, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253258

RESUMO

Background: Oral squamous cell carcinoma (OSCC) is the most lethal oral malignant tumor, however, clinical outcomes remain unsatisfactory. The Hedgehog/Gli2 pathway plays a pivotal role in tumor progression, yet the regulatory mechanism governing its involvement in the malignant evolution process of OSCC remains elusive. Methods: OSCC animal tissue samples were used to detect the activation of the Hedgehog/Gli2 pathway in OSCC. Based on the clinical information of oral cancer patients in TCGA database, the role of this pathway in patients was analyzed, and the activation status of this pathway was verified in human OSCC cells. After activating or inhibiting the Hedgehog pathway, the effects of this pathway on the biological function of OSCC cells and its regulatory mechanism were examined. Interfering the expression of Gli2, a key transcription factor in this pathway, revealed the role of Hedgehog/Gli2 pathway in the malignant evolution of OSCC cells. Results: The Hedgehog pathway exhibits abnormal activation in animal models of OSCC. Clinical data from TCGA demonstrate a significant enrichment of the Hedgehog pathway in patients with OSCC, and Gli2, a key downstream factor of this pathway, is closely associated with the occurrence and progression of OSCC. Cellular studies have revealed aberrant activation of this pathway in human OSCC cells, which exerts its function by modulating the activation of epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin pathways. Subsequent investigations further confirm the pivotal involvement of Gli2 in the Hedgehog pathway activation, underscoring its potential as a therapeutic target for inhibiting malignant proliferation and metastasis of OSCC cells through modulation of EMT and Wnt/ß-catenin pathways. Conclusion: The Hedgehog/Gli2 pathway induces EMT and activates Wnt/ß-catenin pathway to trigger the malignant proliferation and metastasis of OSCC cells, and Gli2 plays a key role in this process, which suggests that targeting Gli2 may be a promising therapeutic strategy for inhibiting the proliferation and metastasis of OSCC.

2.
Exp Anim ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198205

RESUMO

Hamsters are valuable rodent models that are distinct from mice and rats. Currently, the main hamster species used for experimental research are the Syrian golden hamster and Chinese hamster, in addition to hamster species from other countries. Chinese hamsters are small, easy to run and feed, and inexpensive. They are prominent species found only in China and are part of the experimental animal resources of Chinese specialty. Chinese hamsters are distinguished by a black stripe on their back, short tail, pair of easily retractable cheek pouches, and pair of large drooping testes in males with 22 chromosomes. Due to their unique anatomical structure and biological features, Chinese hamsters have been used as a model in biomedical research. Moreover, the breeding and use of Chinese hamsters was comprehensively studied in 1958, with significant breakthroughs. We present a thorough review of the current developments and applications of Chinese hamsters and support the use of this species as a suitable and innovative experimental research model. With the success of Chinese hamster transgenic technology, this species will become more commonly employed in biological and medical research in the future.

3.
J Genet Genomics ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871233

RESUMO

miR-504 plays a pivotal role in the progression of oral cancer. However, the underlying mechanism remains elusive in vivo. Here, we find that miR-504 is significantly down-regulated in oral cancer patients. We generate miR-504 knockout mice (miR-504-/-) using CRISPR/Cas9 technology to investigate its impact on the malignant progression of oral cancer under exposure to 4-Nitroquinoline N-oxide (4NQO). We show that the deletion of miR-504 does not affect phenotypic characteristics, body weight, reproductive performance, and survival in mice, but results in changes in the blood physiological and biochemical indexes of the mice. Moreover, with 4NQO treatment, miR-504-/- mice exhibit more pronounced pathological changes characteristic of oral cancer. RNA sequencing shows that the differentially expressed genes observed in samples from miR-504-/- mice with oral cancer are involved in regulating cell metabolism, cytokine activation, and lipid metabolism-related pathways. Additionally, these differentially expressed genes are significantly enriched in lipid metabolism pathways that influence immune cell infiltration within the tumor microenvironment, thereby accelerating tumor development progression. Collectively, our results suggest that knockout of miR-504 accelerates malignant progression in 4NQO-induced oral cancer by regulating tumor cell proliferation and lipid metabolism, affecting immune cell infiltration.

4.
Sci Rep ; 14(1): 11026, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744903

RESUMO

Currently, the relationship between household size and incident dementia, along with the underlying neurobiological mechanisms, remains unclear. This prospective cohort study was based on UK Biobank participants aged ≥ 50 years without a history of dementia. The linear and non-linear longitudinal association was assessed using Cox proportional hazards regression and restricted cubic spline models. Additionally, the potential mechanisms driven by brain structures were investigated by linear regression models. We included 275,629 participants (mean age at baseline 60.45 years [SD 5.39]). Over a mean follow-up of 9.5 years, 6031 individuals developed all-cause dementia. Multivariable analyses revealed that smaller household size was associated with an increased risk of all-cause dementia (HR, 1.06; 95% CI 1.02-1.09), vascular dementia (HR, 1.08; 95% CI 1.01-1.15), and non-Alzheimer's disease non-vascular dementia (HR, 1.09; 95% CI 1.03-1.14). No significant association was observed for Alzheimer's disease. Restricted cubic splines demonstrated a reversed J-shaped relationship between household size and all-cause and cause-specific dementia. Additionally, substantial associations existed between household size and brain structures. Our findings suggest that small household size is a risk factor for dementia. Additionally, brain structural differences related to household size support these associations. Household size may thus be a potential modifiable risk factor for dementia.


Assuntos
Demência , Características da Família , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encéfalo/patologia , Demência/epidemiologia , Demência/etiologia , Incidência , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco , Biobanco do Reino Unido , Reino Unido/epidemiologia
5.
Stroke ; 55(3): 660-669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299341

RESUMO

BACKGROUND: Our primary objective was to assess the association between joint exposure to various air pollutants and the risk of ischemic stroke (IS) and the modification of the genetic susceptibility. METHODS: This observational cohort study included 307 304 British participants from the United Kingdom Biobank, who were stroke-free and possessed comprehensive baseline data on genetics, air pollutant exposure, alcohol consumption, and dietary habits. All participants were initially enrolled between 2006 and 2010 and were followed up until 2022. An air pollution score was calculated to assess joint exposure to 5 ambient air pollutants, namely particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, as well as nitrogen oxide and nitrogen dioxide. To evaluate individual genetic risk, a polygenic risk score for IS was calculated for each participant. We adjusted for demographic, social, economic, and health covariates. Cox regression models were utilized to estimate the associations between air pollution exposure, polygenic risk score, and the incidence of IS. RESULTS: Over a median follow-up duration of 13.67 years, a total of 2476 initial IS events were detected. The hazard ratios (95% CI) of IS for per 10 µg/m3 increase in particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, nitrogen dioxide, and nitrogen oxide were 1.73 (1.33-2.14), 1.24 (0.88-1.70), 1.13 (0.89-1.33), 1.03 (0.98-1.08), and 1.04 (1.02-1.07), respectively. Furthermore, individuals in the highest quintile of the air pollution score exhibited a 29% to 66% higher risk of IS compared with those in the lowest quintile. Notably, participants with both high polygenic risk score and air pollution score had a 131% (95% CI, 85%-189%) greater risk of IS than participants with low polygenic risk score and air pollution score. CONCLUSIONS: Our findings suggested that prolonged joint exposure to air pollutants may contribute to an increased risk of IS, particularly among individuals with elevated genetic susceptibility to IS.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , AVC Isquêmico , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , AVC Isquêmico/induzido quimicamente , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Óxidos de Nitrogênio , Óxido Nítrico , Estratificação de Risco Genético , Exposição Ambiental/efeitos adversos
6.
Physiol Plant ; 175(6): e14072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148219

RESUMO

Under global warming, the availability of water resources is one of the most important factors affecting trait evolution and plant species distribution across terrestrial ecosystems, and the relationships between drought resistance strategies and the hydrological niche characteristics of plants are worth studying. We continuously monitored physiological drought response parameters such as gs , Tr , proline, soluble sugar, gene expression and activities of SOD, POD, and CAT to assess drought resistance strategies of Platycarya longipes and Lindera communis; determined plant soil hydrological niche separation by stable H and O isotope analysis; and analysed the effects of interspecific water competition by comparing the differences in morphological and physiological parameters between solo and mixed planting. Under drought stress, L. communis exhibited a drought avoidance strategy, and P. longipes exhibited a drought tolerance strategy. L. communis utilized the water within the shallow soil layer, while P. longipes mainly utilized the water in the deeper soil layer; there were fewer parameters with significant differences between the solo planting and the mixed planting of L. communis compared to P. longipes. Overall, P. longipes benefited from coexistence with L. communis under drought stress, which may be because L. communis employs a drought avoidance strategy, reducing soil water consumption in the drought environment. These results suggested that differences in functional traits or resistance strategies among species benefit species' coexistence in a community under drought stress.


Assuntos
Secas , Ecossistema , Solo , Plantas/metabolismo , Água/metabolismo
7.
Biomolecules ; 13(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37892146

RESUMO

There has been a growing interest in studying the communication of gut microbial metabolites between the gut and the liver as liver fibrosis progresses. Although 3-Indolepropionic acid (IPA) is regarded as a clinically valuable gut metabolite for the treatment of certain chronic diseases, the effects of oral administration of IPA on hepatic fibrosis in different animal models have been conflicting. While some mechanisms have been proposed to explain these contradictory effects, the direct impact of IPA on hepatic fibrosis remains unclear. In this study, we found that IPA could directly activate LX-2 human hepatic stellate cells in vitro. IPA upregulated the expression of fibrogenic marker genes and promoted the features associated with HSCs activation, including proliferation and contractility. IPA also increased reactive oxygen species (ROS) in mitochondria and the expression of inflammation-related genes in LX-2 cells. However, when a ROS-blocking agent was used, these effects were reduced. p38 and JNK, the downstream signaling cascades of ROS, were found to be required for the activation of LX-2 induced by IPA. These findings suggest that IPA can directly activate hepatic stellate cells through ROS-induced JNK and p38 signaling pathways.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Estreladas do Fígado , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Transdução de Sinais
8.
Hum Vaccin Immunother ; 19(2): 2257989, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37813849

RESUMO

Cervical cancer is the fourth most common cancer in women, with a high disease burden worldwide. Human papillomavirus (HPV) vaccination reduces HPV-related infection and associated cervical lesions and cancers. Few studies have explored HPV vaccination impact in real-world settings in China. This study aims to monitor HPV vaccine uptake and its effects on HPV-related diseases, evaluating vaccine effectiveness in a real-world context and complementing clinical trial results. Electronic health records (EHRs) from 2010 to 2020 from the Yinzhou Regional Health Information Platform (YRHIP) will be queried/extracted to identify and monitor HPV vaccine uptake in females aged 9-45 years, and HPV-related screening and prevalence (i.e., cervical HPV infection, cervical intraepithelial neoplasia [CIN] grades 1-3, and cervical cancer) in a cohort of females aged 9-70 years. Cervical cancer screening guidelines and expert consultation will be used for intra-database validation, to determine the best algorithm for identifying HPV-related disease. Pre-launch (2010-2016) and post-launch (2018-2020) periods are predefined. A time trend analysis will be performed to describe the vaccination impact on disease prevalence and, if prerequisite conditions are met, vaccine effectiveness will be computed using logistic regression, adjusting for age, calendar year, history of screening and HPV infection. Cohort study design, outcomes validation, data linkage, and multi-step statistical analyses could provide valuable experience for designing other real-world studies in the future. The study outcomes can help inform policy-makers about uptake and HPV vaccination policy in girls and women in Yinzhou District, and provide insights on progress toward achieving goals set by the World Health Organization.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/prevenção & controle , Papillomavirus Humano , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/complicações , Estudos de Coortes , Registros Eletrônicos de Saúde , Filmes Cinematográficos , Detecção Precoce de Câncer , Vacinação , China/epidemiologia
10.
Front Microbiol ; 14: 1117905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228368

RESUMO

Functional constipation (FC) is a high morbidity gastrointestinal disease for which dysfunction in the enteric nervous system is a major pathogenesis mechanism. To enhance our understanding of the involvement of intestinal microbiota and its metabolites in the pathogenesis of FC, we conducted a shotgun metagenomic sequencing analysis of gut microbiota and serum short-chain fatty acids (SCFAs) analysis in 460 Chinese women with different defecation frequencies. We observed that the abundance ofFusobacterium_varium, a butyric acid-producing bacterium, was positively correlated (P = 0.0096) with the frequency of defecation; however, the concentrations of serum butyric acid was negatively correlated (P = 3.51E-05) with defecation frequency. These results were verified in an independent cohort (6 patients with FC and 6 controls). To further study the effects of butyric acid on intestinal nerve cells, we treated mouse intestinal neurons in vitro with various concentrations of butyrate (0.1, 0.5, 1, and 2.5 mM). We found that intestinal neurons treated with 0.5 mM butyrate proliferated better than those in the other treatment groups, with significant differences in cell cycle and oxidative phosphorylation signal pathways. We suggest that the decreased butyrate production resulting from the reduced abundance of Fusobacterium in gut microbiota affects the proliferation of intestinal neurons and the energy supply of intestinal cells. However, with FC disease advancing, the consumption and excretion of butyric acid reduce, leading to its accumulation in the intestine. Moreover, the accumulation of an excessively high amount of butyric acid inhibits the proliferation of nerve cells and subsequently exacerbates the disease.

11.
Front Immunol ; 14: 1138524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234166

RESUMO

Background: Forkhead box M1 (FOXM1) is a member of the Forkhead box (Fox) transcription factor family. It regulates cell mitosis, cell proliferation, and genome stability. However, the relationship between the expression of FOXM1 and the levels of m6a modification, immune infiltration, glycolysis, and ketone body metabolism in HCC has yet to be fully elucidated. Methods: Transcriptome and somatic mutation profiles of HCC were downloaded from the TCGA database. Somatic mutations were analyzed by maftools R package and visualized in oncoplots. GO, KEGG and GSEA function enrichment was performed on FOXM1 co-expression using R. We used Cox regression and machine learning algorithms (CIBERSORT, LASSO, random forest, and SVM-RFE) to study the prognostic value of FOXM1 and immune infiltrating characteristic immune cells in HCC. The relationship between FOXM1 and m6A modification, glycolysis, and ketone body metabolism were analyzed by RNA-seq and CHIP-seq. The competing endogenous RNA (ceRNA) network construction relies on the multiMiR R package, ENCORI, and miRNET platforms. Results: FOXM1 is highly expressed in HCC and is associated with a poorer prognosis. At the same time, the expression level of FOXM1 is significantly related to the T, N, and stage. Subsequently, based on the machine learning strategies, we found that the infiltration level of T follicular helper cells (Tfh) was a risk factor affecting the prognosis of HCC patients. The high infiltration of Tfh was significantly related to the poor overall survival rate of HCC. Besides, the CHIP-seq demonstrated that FOXM1 regulates m6a modification by binding to the promoter of IGF2BP3 and affects the glycolytic process by initiating the transcription of HK2 and PKM in HCC. A ceRNA network was successfully obtained, including FOXM1 - has-miR-125-5p - DANCR/MIR4435-2HG ceRNA network related to the prognosis of HCC. Conclusion: Our study implicates that the aberrant infiltration of Tfh associated with FOXM1 is a crucial prognostic factor for HCC patients. FOXM1 regulates genes related to m6a modification and glycolysis at the transcriptional level. Furthermore, the specific ceRNA network can be used as a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Algoritmos , Carcinoma Hepatocelular/genética , Proteína Forkhead Box M1/genética , Fatores de Transcrição Forkhead/genética , Glicólise/genética , Cetonas , Neoplasias Hepáticas/genética
12.
Expert Rev Vaccines ; 22(1): 307-314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938990

RESUMO

BACKGROUND: Monitoring the risk of intussusception after the introduction of rotavirus vaccines is recommended by the World Health Organization (WHO). Although the validity of intussusception monitoring using electronic health records (EHRs) has been confirmed previously, no similar studies have been conducted in China. We aimed to verify the diagnosis and determine an algorithm with the best performance for identification of intussusception using Chinese EHR databases. RESEARCH DESIGN AND METHODS: Using the Regional Health Information Platform in Ningbo, patients aged 0-72 months from 2015 to 2021 with any related visits for intussusception were included. The algorithms were based on diagnostic codes or keywords in different clinical scenarios, and their performance was evaluated with positive predictive value (PPV) and sensitivity in line with the Brighton guidelines. RESULTS: Brighton level 1 intussusception was confirmed in 2958 patients with 3246 episodes. Fine-tuned algorithms combining the appearance of the relevant ICD-10 codes or the Chinese keyword 'Chang Tao' in any diagnostic reports with the results of enema treatments or related surgeries showed the highest sensitivity, while the highest PPV was obtained by further criteria based on typical radiographic appearances. CONCLUSION: Intussusception could be identified and validated internally using EHRs in Ningbo.


Assuntos
Registros Eletrônicos de Saúde , Intussuscepção , Humanos , Criança , Intussuscepção/diagnóstico , Intussuscepção/epidemiologia , Valor Preditivo dos Testes , Algoritmos , China/epidemiologia
13.
BMC Cancer ; 23(1): 162, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800936

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a common malignant tumor associated with poor prognosis. MicroRNAs (miRNAs) play crucial regulatory roles in the cancer development. However, the role of miRNAs in OSCC development and progression is not well understood. METHODS: We sought to establish a dynamic Chinese hamster OSCC animal model, construct miRNA differential expression profiles of its occurrence and development, predict its targets, and perform functional analysis and validation in vitro. RESULTS: Using expression and functional analyses, the key candidate miRNA (miR-181a-5p) was selected for further functional research, and the expression of miR-181a-5p in OSCC tissues and cell lines was detected. Subsequently, transfection technology and a nude mouse tumorigenic model were used to explore potential molecular mechanisms. miR-181a-5p was significantly downregulated in human OSCC specimens and cell lines, and decreased miR-181a-5p expression was observed in multiple stages of the Chinese hamster OSCC animal model. Moreover, upregulated miR-181a-5p significantly inhibited OSCC cell proliferation, colony formation, invasion, and migration; blocked the cell cycle; and promoted apoptosis. BCL2 was identified as a target of miR-181a-5p. BCL2 may interact with apoptosis- (BAX), invasion- and migration- (TIMP1, MMP2, and MMP9), and cell cycle-related genes (KI67, E2F1, CYCLIND1, and CDK6) to further regulate biological behavior. Tumor xenograft analysis indicated that tumor growth was significantly inhibited in the high miR-181a-5p expression group. CONCLUSION: Our findings indicate that miR-181a-5p can be used as a potential biomarker and provide a novel animal model for mechanistic research on oral cancer.


Assuntos
MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Cricetinae , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cricetulus , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
14.
Front Endocrinol (Lausanne) ; 13: 957010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465614

RESUMO

Background: Effectively predicting the risk of adverse pregnancy outcome (APO) in women with systemic lupus erythematosus (SLE) during early and mid-pregnancy is a challenge. This study was aimed to identify potential markers for early prediction of APO risk in women with SLE. Methods: The GSE108497 gene expression dataset containing 120 samples (36 patients, 84 controls) was downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was performed, and differentially expressed genes (DEGs) were screened to define candidate APO marker genes. Next, three individual machine learning methods, random forest, support vector machine-recursive feature elimination, and least absolute shrinkage and selection operator, were combined to identify feature genes from the APO candidate set. The predictive performance of feature genes for APO risk was assessed using area under the receiver operating characteristic curve (AUC) and calibration curves. The potential functions of these feature genes were finally analyzed by conventional gene set enrichment analysis and CIBERSORT algorithm analysis. Results: We identified 321 significantly up-regulated genes and 307 down-regulated genes between patients and controls, along with 181 potential functionally associated genes in the WGCNA analysis. By integrating these results, we revealed 70 APO candidate genes. Three feature genes, SEZ6, NRAD1, and LPAR4, were identified by machine learning methods. Of these, SEZ6 (AUC = 0.753) showed the highest in-sample predictive performance for APO risk in pregnant women with SLE, followed by NRAD1 (AUC = 0.694) and LPAR4 (AUC = 0.654). After performing leave-one-out cross validation, corresponding AUCs for SEZ6, NRAD1, and LPAR4 were 0.731, 0.668, and 0.626, respectively. Moreover, CIBERSORT analysis showed a positive correlation between regulatory T cell levels and SEZ6 expression (P < 0.01), along with a negative correlation between M2 macrophages levels and LPAR4 expression (P < 0.01). Conclusions: Our preliminary findings suggested that SEZ6, NRAD1, and LPAR4 might represent the useful genetic biomarkers for predicting APO risk during early and mid-pregnancy in women with SLE, and enhanced our understanding of the origins of pregnancy complications in pregnant women with SLE. However, further validation was required.


Assuntos
Lúpus Eritematoso Sistêmico , Complicações na Gravidez , Resultado da Gravidez , Feminino , Humanos , Gravidez , Área Sob a Curva , Marcadores Genéticos/genética , Lúpus Eritematoso Sistêmico/genética , Resultado da Gravidez/genética , Curva ROC , RNA Longo não Codificante/genética , Proteínas do Tecido Nervoso/genética , Complicações na Gravidez/genética
15.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1528-1539, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36239352

RESUMO

Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by cognitive decline, which could be promoted by mitochondrial dysfunction induced by mitochondrial Ca 2+ (mCa 2+) homeostasis Mitochondrial calcium uniporter (MCU), a key channel of mCa 2+ uptake, may be a target for AD treatment. In the present study, we reveal for the first time that MCU knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through radial arm maze task. Western blot analysis, transmission electron microscopy (TEM), Golgi staining, immunohistochemistry (IHC) and ELISA results demonstrate that MCU knockdown in hippocampal neurons upregulates the levels of postsynaptic density protein 95 (PSD95) and synaptophysin (SYP), and increases the numbers of synapses and dendritic spines. Meanwhile, MCU knockdown in hippocampal neurons decreases the neuroinflammatory response induced by astrogliosis and high levels of IL-1ß and TNF-α, and improves the PINK1-Parkin mitophagy signaling pathway and increases the level of Beclin-1 but decreases the level of P62. In addition, MCU knockdown in hippocampal neurons recovers the average volume and number of mitochondria. These data confirm that MCU knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through ameliorating the synapse structure and function, relieving the inflammation response and recovering mitophagy, indicating that MCU inhibition has the potential to be developed as a novel therapy for AD.


Assuntos
Doença de Alzheimer , Canais de Cálcio , Memória , Neurônios , Animais , Camundongos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Canais de Cálcio/genética
16.
Oral Dis ; 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251494

RESUMO

OBJECTIVE: microRNA-450b (miR-450b) plays an important role in cancer progression; however, its function in oral squamous cell carcinoma (OSCC) remains largely unknown. This study aimed to investigate the action mechanisms of miR-450b in OSCC. MATERIALS AND METHODS: OSCC animal model was established via continuous induction with single-drug 7, 12-dimethylbenzo[a]anthracene (DMBA). Animal tissue samples were pathologically typed using haematoxylin-eosin (HE) staining. The Cancer Genome Atlas (TCGA) database was used to predict miR-450b and SERPINB2 expression in head and neck squamous cell carcinoma (HNSCC). qRT-PCR and Western blotting were used to detect gene and protein expression in OSCC tissue and cells, respectively. OSCC cell proliferation, growth, migration and invasion were detected using CCK-8, colony formation, transwell migration and matrigel invasion assays, respectively. Bioinformatic tools were used to predict miR-450b target genes. Dual-luciferase reporter assay was used to verify targeting between miR-450b and SERPINB2. Finally, small interfering RNA (siRNA) was used to reduce SERPINB2 expression to detect its effect on tumourigenesis. RESULTS: Four stages of OSCC carcinogenesis (normal oral epithelium, simple epithelial hyperplasia, dysplasia and OSCC) were identified. miR-450b was found to be overexpressed in OSCC animal samples, HNSCC samples and human OSCC cells. Upregulation of miR-450b significantly promoted OSCC cell proliferation, colony formation, migration and invasion, while its downregulation had the opposite effect. SERPINB2 was found to be a miR-450b target gene, and its expression was negatively correlated with miR-450b expression. Altering SERPINB2 expression effectively inhibited OSCC cell invasion, metastasis and epithelial-mesenchymal transition (EMT). CONCLUSIONS: miR-450b plays a key role in OSCC tumourigenesis by regulating OSCC cell migration, invasion and EMT via SERPINB2.

17.
Mol Biol Rep ; 49(10): 9575-9584, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35980530

RESUMO

BACKGROUND: The CRISPR/Cas9 system is widely used for genome editing in human, rat and mouse cells. In this study, we established Fzd6 mutant mice using CRISPR/Cas9 technology, and obtained Fzd6 homozygous mutant (Fzd6Q152E) mice through breeding. Fzd6 plays a role in depression, but there are few related reports. We used this model to investigate the mechanism of Fzd6 involved in depression, and build a solid foundation for subsequent in-depth studies. METHODS AND RESULTS: The target of Fzd6 mutation was obtained by CRISPR/Cas9 technology and hippocampal tissue was collected for Nissl staining and histological analysis. Blood was collected for enzyme linked immunosorbent assay (ELISA); The gene expression of Fzd6 and the related genes expression in wnt pathway was quantified by quantitative real-time PCR (qRT-PCR), and then expression of Fzd6 and proteins in the Wnt pathway were identified by western blotting. ELISA results showed that the expression levels of brain derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), and Noradrenaline (NE) in serum were significantly decreased in Fzd6Q152E mice, whereas the mRNA expression of Lrp5, Lrp6, and Dkk2 is increased. The western blotting revealed that the expression of Fzd6 and Lrp6 is decreased, although the expression of Dkk2 and Gsk-3ß increased. CONCLUSION: Our study successfully established homozygous Fzd6 mutant mice model. The relationship between Fzd6-Wnt and depression was preliminarily clarified, which provides an ideal animal model for subsequent research on diseases induced by the Fzd6 mutation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Sistemas CRISPR-Cas , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Sistemas CRISPR-Cas/genética , Receptores Frizzled/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Camundongos , Norepinefrina , RNA Mensageiro , Ratos , Reprodução , Serotonina , Tecnologia
18.
J Ovarian Res ; 15(1): 31, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227295

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) plagues 1% of women under 40, while quite a few remain an unknown cause. The development of sequencing has helped find pathogenic genes and reveal the relationship between DNA repair and ovarian reserve. Through the exome sequencing, our study targets screening out the possible POI pathogenic gene and variants in a Chinese family and 20 sporadic POI patients, preliminarily exploring the functional impact and finding out potential linkages between the gene and POI. RESULTS: The whole exome sequencing suggested a novel FMN2 heterozygous variant c.1949C > T (p.Ser650Leu) carried by all three patients in a Chinese family and another c.1967G > A(p.Arg656His) variant in a sporadic case. Since no FMN2 missense mutation is reported for causing human POI, we preliminarily assessed p.Ser650Leu variant via cross-species alignment and 3D modeling and found it possibly deleterious. A series of functional evidence was consistent with our hypothesis. We proved the expression of FMN2 in different stages of oocytes and observed a statistical difference of chromosomal breakages between the POI patient carrying p.Arg656His variant and the health control (p = 0.0013). Western Blot also suggested a decrease in FMN2 and P21 in the mutant type and an associated increase in H2AX. The p.Arg656His variant with an extremely low frequency also indicated that the gene FMN2 might play an essential role in the genetic etiology of POI. To the best of our knowledge, this is the first POI report on missense variants of FMN2. CONCLUSION: This finding indicates a novel gene possibly related to POI and sheds lights on the study of FMN2.


Assuntos
Forminas/genética , Forminas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Insuficiência Ovariana Primária/genética , Adulto , Reparo do DNA/genética , Feminino , Feto/metabolismo , Heterozigoto , Histonas/sangue , Humanos , Linfócitos/metabolismo , Estrutura Molecular , Mutação de Sentido Incorreto , Ovário/metabolismo , Linhagem , Insuficiência Ovariana Primária/sangue , Sequenciamento do Exoma
19.
J Alzheimers Dis ; 83(2): 799-818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366339

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs. OBJECTIVE: To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD. METHODS: A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers. RESULTS: DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels. CONCLUSION: DA4-JC is a promising drug for the treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Proteína 4 Homóloga a Disks-Large/genética , Peptídeo 1 Semelhante ao Glucagon/agonistas , Potenciação de Longa Duração/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinapses/metabolismo
20.
Biol Reprod ; 104(6): 1282-1291, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33709118

RESUMO

Zona pellucida (ZP), which is composed of at most four extracellular glycoproteins (ZP1, ZP2, ZP3, and ZP4) in mammals, shelters the oocytes and is vital in female fertility. Several studies have identified the indispensable roles of ZP1-3 in maintaining normal female fertility. However, the understanding of ZP4 is still very poor because only one study on ZP4-associated infertility performed in rabbits has been reported up to date. Here we investigated the function of mammalian Zp4 by creating a knockout (KO) rat strain (Zp4-/- rat) using CRISPR-Cas9-mediated DNA-editing method. The influence of Zp4 KO on ZP morphology and some pivotal processes of reproduction, including oogenesis, ovulation, fertilization, and pup production, were studied using periodic acid-Schiff's staining, superovulation, in vitro fertilization, and natural mating. The ZP morphology in Zp4-/- rats was normal, and none of these pivotal processes was affected. This study renewed the knowledge of mammalian Zp4 by suggesting that Zp4 was completely dispensable for female fertility.


Assuntos
Fertilidade/genética , Fertilização , Ratos/fisiologia , Glicoproteínas da Zona Pelúcida/genética , Animais , Feminino , Edição de Genes , Ratos/genética , Glicoproteínas da Zona Pelúcida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA